The Interdisciplinary Biomedical Sciences Ph.D. Program

Big enough to be on the forefront of research

Small enough for one on one interactions with experts

We foster a cooperative climate for training and research that has an established record of timely graduations and alumni successes.  We also provide competitive stipends in a vibrant region with a low cost of living.

Featured Program Faculty

Dr. Ashot Kozak


Dr. Ashot Kozak research interests focus on Cation channels expressed in leukocytes; Transient Receptor Potential (TRP) channels; ion channels involved in nociception.

Integrative Biology and Toxicology

Are you interested in studying the mammalian organism as an entire system or investigating a specific organ system as a part of the whole organism? If so, consider the Integrative Biology and Toxicology area of concentration.

Molecular Genetics and Cell Biology

Research training opportunities in the Molecular Genetics and Cell Biology area of concentration extend across the molecular, cellular, intercellular and organismal levels of biology.


Neuroscience and Physiology

The Neuroscience and Physiology area of concentration involves investigating the function of the cell, the organ and the whole animal, using molecular, cellular, physiological and behavioral approaches.

Structural and Quantitative Biology

Traditional biological research and computational science methods have come together to form the next wave in research. This combination is maximized in the Structural and Quantitative Biology area of concentration.

Research Spotlight






As action potentials propagate along axons, they are regenerated by excitatory domains called nodes of Ranvier. This study uncovered multiple ‘back-up’ molecular mechanisms to assemble nodes, all dependent on the interaction between neurons and myelinating glial cells.

Susuki K, Chang K-J, Zollinger DR, Liu Y, Ogawa Y, Eshed-Eisenbach Y, Dours-Zimmermann MT, Oses-Prieto J, Burlingame AL, Seidenbecher C, Zimmermann DR, Oohashi T, Peles E, Rasband MN (2013). Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78:469-482.