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Despite the rich literature on techniques for creating a single image from multispectral sensors, there is 

relatively little research on methods for assessing these techniques based on human performance.  We 

propose the use of Systems Factorial Technology (SFT), a nonparametric, mathematical modeling 

framework for analyzing human cognition. Previous work has demonstrated the use of SFT in evaluating 

human perception of multi-spectral imagery, although on relatively contrived tasks.  In this work, we 

extend the approach to a task in which observers must determine whether a person in the image is holding a 

gun or a tool.  We found that all observers processed the information from each spectrum less efficiently 

when images based on two different spectra were presented together, regardless of whether the information 

was fused into a single image or kept separately.  Furthermore, when images from the two different spectra 

were presented side-by-side, some observers were able to use both sources in parallel.   

 

Image fusion is the process of combining information 

from two or more images of a scene into a single composite 

image that ideally is more informative and is more suitable for 

visual perception or computer processing. By combining the 

output of different sensors that capture complementary 

information in the environment, image fusion offers the 

potential of extending the information available to users 

without overwhelming their perceptual systems.  Despite the 

potential advantage for human cognition and perception, 

relatively little research has focused on human performance 

with fused images.   Indeed, Muller and Narayanan (2009) 

stressed that the cognitive aspects of multiple-sensors had not 

received as much attention as technical aspects of combining 

multisensory image information. 

Nonetheless, cases in which researchers have explored the 

potential perceptual and cognitive advantages of image fusion 

span many domains including medical imaging (Deshmukh & 

Bhosale, 2010), night-time driving (McCarley & Krebs, 2000), 

and concealed weapon detection (Xue, Blum, & Li, 2002; Xue 

& Blum, 2003).  Although these studies often indicate 

advantages of fused imagery, improved performance of 

observers is not guaranteed, and it is unclear in which situation 

image fusion would be helpful. The three main factors that 

vary across these studies that may have contributed to 

heterogeneous conclusions are: algorithm used, task 

performed and scene content.  

In most cases these studies have focused on the 

comparison between single-sensor images and fused imagery 

but we argue that side-by-side presentation of images from 

different sensors should also be considered as a baseline of 

comparison.  For example, Nogami et al., (2007) demonstrated 

that although fused images were clinically valuable, side-by-

side presentation showed equivalent performance. More 

recently, Fox (2015) found that side-by-side presentation 
of images results in equivalent or even enhanced 
performance as fused images. While Fox (2015) focused on 

more generic tasks (e.g., discriminating the direction which a 

subject in the scene is facing), in this paper we extend the 

investigation to a more applied task: weapon/non-weapon 

discrimination. 

In the current design, we compared whether multi-sensor 

images presented side-by-side or fused by algorithmic method 

led to more efficient performance. We refer to the side-by-side 

presentation as cognitive fusion because the combination of 

information across sensor images occurs in the cognitive 

processing by the observer.  Different styles of cognitive 

fusion are possible across observers—e.g., focusing on one-

side-at-a-time or simultaneously.   

To examine both how efficiently observers are using 

multispectral imagery and to examine processing strategies for 

cognitive fusion across observers, we used systems factorial 

technology (SFT). SFT is a framework for studying how 

different sources of information combine in cognitive 

processing (Townsend & Nozawa, 1995; Houpt, Blaha, 

McIntire, Havig, & Townsend, 2014). SFT includes 

measurements that are informative with regards to 

architecture, stopping rule, workload capacity and stochastic 

dependence. Here we use architecture to mean the temporal 

organization of information processing; whether from each 

source could is used one at a time in a sequence (serial) or 

simultaneously (parallel). Workload capacity is how the 

processing rate of each source changes as more sources are 

added. The stopping rule refers to the whether one (OR rule) 

or both sources (AND rule) are processed before responding. 

Stochastic dependence refers to how the processing of each 

source of information interacts with the processing of others. 

The SFT measure of workload capacity, the capacity 

coefficient, is a comparison between the predicted 

performance of an unlimited-capacity, independent and 

parallel (UCIP) system and the observed performance. The 

predicted UCIP performance is based on the summed 

cumulative hazard function for responding to each sensor 

image alone (see Houpt, et al., 2012 for details). The equation 

for the capacity coefficient for OR systems is given by: 

𝐶𝑂𝑅(𝑡) =  
𝐻𝐹𝑢𝑠𝑒𝑑(𝑡)

𝐻𝐿𝑊𝐼𝑅(𝑡)+𝐻𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝑡)
                               (1) 



If the capacity coefficient is larger than one, the system is 

super-capacity. If the ratio is equal to one, the system is 

unlimited-capacity. If the ratio is smaller than one, the system 

is limited-capacity. In this paper, we use the capacity 

coefficient to assess the effect of presenting a single sensor 

image compared to two sensor images on weapon (i.e. “gun”) 

and non-weapon (i.e. “tool”) discrimination performance. 

The SFT measures of architecture and stopping rule are 

the Mean Interaction Contrast (MIC) and more general 

Survivor Interaction Contrast (SIC). The interaction contrast is 

between speeds manipulations factorially applied to each 

source in information processing. In current study, we 

factorially added Gaussian luminance noise to each sensor 

image. 

 

SIC(t) = [SSS(t)-SSF(t)] – [SFS(t) –SFF(t)]               (2) 

 

Each term within the brackets should be positive (slower 

processing implies higher mean response times and higher 

survivor functions across time).  However each combination 

of architecture and stopping-rule imply a different SIC shape: 

A parallel model with an OR stopping rule has an entirely 

positive SIC; a parallel model with an AND stopping rule has 

an entirely negative SIC; a serial process with an OR stopping 

rule has an SIC always equal to zero; a serial process with 

AND stopping rule is first negative, then positive, with equal 

positive and negative areas-under-the-curve; a coactive 

process also has a negative-then-positive SIC but with more 

positive area. 

 

Experiment 1 

 

The goal of Experiment 1 was to measure the capacity 

coefficient with both side-by-side imagery and algorithmically 

fused imagery.  

 

Methods 

 

Observers. Ten observers whom gave informed consent 

participated in the study (6 male; average age=23.8). All had 

normal or corrected-to-normal visual acuity, and normal color 

vision. After finishing the study, each participant received 10 

dollars as compensation. 

Stimuli. Stimuli were ten images taken of a female 

holding either a gun or a tool using both a long-wave infrared 

(LWIR) sensor and a standard visible-spectrum sensitive 

camera (see Pinkus, Toet, and Task, 2009, for details of the 

image collection).  Both visible and LWIR images were 

mapped to grey scale for presentation to the observers. Fused 

images were created using simultaneously captured LWIR and 

visible images that were fused image using a Laplacian 

pyramid algorithm (see Yang, Jing, & Zhao, 2010 for a 

review).  All images were 256 × 256 pixels in size. Stimuli 

were presented in the center of a 19” monitor with resolution 

of 1280 ×1024 pixels and a refresh rate of 85 Hz. 

Figure 1. A: The procedure of a trial 

(example was given for side-by-side 
presentation). B: three center blocks (left) and 

three side-by-side blocks (right) used in the 

experiment. From top to bottom: visible 

blocks, LWIR blocks and fused blocks.  
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Figure 2. Response times for interleaving effect and 
sensor type. The confidence intervals in repeated 

measures designs were calculated according to methods 

by Jarmarsz and Hollands (2009).  



Procedure. Figure 1 gives an overview of the trial 

procedure.  The observer’s task was to click mouse to indicate 

whether the person in the image was holding a gun or tool. 

Each trial began with a square indicating where images might 

appear that lasted a uniformly random duration between 

400ms and 500ms.  Next, the stimuli appeared for 350ms 

followed by a blank screen while waiting for the subjects’ 

response. There were six different blocks totaling 1200 trials. 

The whole session lasted approximately one hour. 

 

Results 

 

Accuracy and correct response times (RT) were analyzed 

with a repeated measure ANOVA using the ez package 

(Lawrence, 2015) in R (R Core Team, 2015).  One ANOVA 

was run to assess the difference between a single sensor image 

in isolation and two sources presented together (averaged 

across both centered and side-by-side presentation blocks).  A 

second ANOVA was applied the subset of the data for which 

both sensor were presented to assess the difference between 

fused and side-by-side images. The third ANOVA checked all 

the other factors that would lead to differences for non-fused 

trials. 

The difference between single-source images (M = 

515.83, SD = 176.33; M = 0.93, SD = 0.26) and two-source 

images (M = 530.92, SD = 183.89; M = 0.91, SD = 0.29) was 

not significant for either RT (F (1, 9) = 3.93, p = 0.08) or 

accuracy (F (1, 9) = 1.48, p = 0.26).  

The difference between performance with cognitive 

fusion (M = 542.19, SD = 179.78; M = 0.94, SD = 0.24) and 

algorithmic fusion (M = 518.87, SD = 187.52; M = 0.88, SD = 

0.33) was not significant for either RT (F (1, 9) = 1.21, p = 

0.3) or accuracy (F (1, 9) = 2.92, p =0.12). 

An ANOVA tested sensor type of images, location 

presented, and interleaving effect in non-fused trials. For 

accuracy, only a main effect of interleaving effect was 

significant (𝐹(1,9) = 19.6, 𝑝 < 0.01, 𝜂𝐺
2 = 0.06). When 

images were presented in the center of the screen, subjects 

responded faster (M = 497.98, SD = 169.40) than when images 

were presented side-by-side (M = 534.05, SD = 181.33; F (1, 

9) = 19.68, p < 0.01, 𝜂𝐺
2 = 0.10). Performance was better in the 

no interleaving (only LWIR or visible images) blocks (M = 

487.39, SD = 159.50) than interleaved blocks (M = 545.20, SD 

= 187.71; F (1, 9) = 40.68, p < 0.01, 𝜂𝐺
2  = 0.10). The main 

effect of sensor type, LWIR (M = 509.90, SD =180.47) or 

visible (M =521.71, SD =171.93), was not significant (F (1, 9) 

= 1.63, p = 0.23). But there was a significant interaction with 

interleaving (Figure 2, F (1, 9) = 24.53, p < 0.01, 𝜂𝐺
2  = 0.02). 

And interleaving effect also interacted with the location 

presented (Figure 3; F (1, 9) = 42.87, p < 0.01, 𝜂𝐺
2  = 0.04).  

Figures 2 and 3 indicate that when LWIR and visible 

images were interleaved in presentation, subjects couldn’t 

predict the next image’s type, thus the advantage of visible 

image (M = 468.40, SD = 152.54) over LWIR image (M = 

506.28, SD = 164.00) disappeared. Also, in the interleaved 

block, subjects needed to switch attention between the left side 

and right side, so people responded slower (M = 583.12, SD = 

194.28) compared to that when they only need to focus on a 

fixed position of the screen (M =508.18, SD = 173.28; F (1,9) 

= 35.83, p < 0.01, 𝜂𝐺
2  = 0.80). 

Capacity analyses were only applied to observers who had 

at least 90% accuracy in all conditions within the algorithmic 

blocks (7/10 participants) or cognitive-fusion blocks (5/10 

participants). Figure 4 depicts those participant’s capacity 

Figure 4. Plots for capacity coefficient analysis for 

algorithmic fusion (top) and cognitive fusion (bottom).  

Figure 3. Response times for interleaving effect and 

location. The confidence intervals in repeated measures 

designs were calculated according to methods by 

Jarmarsz and Hollands (2009). 

 



coefficients. Individual level capacity analysis indicated 7/7 

participants were limited capacity with cognitive fusion (z-

scores between -11.2 and -10.3) and 5/5 were limited capacity 

with algorithmic (z between -10.98 and -6.13). Group level t-

tests indicated both fusion methods led to limited capacity 

(Algorithmic: t (6) = -12.64; Cognitive: t (4) = -73.36). 

Cognitive fusion was statistically more limited compared to 

algorithmic fusion (t (6.62) = 4.02, p <0.01, d = 2.16). 

 

Discussion 

 

Both algorithmic fusion and cognitive fusion led to 

limited capacity, consistent with previous work (Fox, 2015).  

However, unlike Fox (2015), there was a difference in the 

degree of capacity limitation between the two methods. The 

process of switching attention between locations increased 

reaction time and reduced the advantage of visible images 

over IR images in our task. The side-by-side presentation 

method increased reaction times but resulted in equal 

performance compared to the images developed by 

algorithmic fusion in the center of screen. 

There are various potential explanations for the limited 

capacity performance.  For the side-by-side imagery, 

observers may have only used one source and hence lost out 

on the redundancy gain predicted by independent parallel 

processing (cf. Raab, 1962).  This explanation may also apply 

to performance with fused images: Because the information in 

both sensor images is essentially the same, the fused image is 

not necessarily more informative than either individual source 

image.  

If observers were using a strategy of focusing on only one 

sensor image, then they should have a flat SIC and 0 MIC 

when examined with the factorial salience conditions.  

Alternatively, observers could be using both sensor images 

but, due to limited resources (e.g., attention, foveation), be 

processing each source slower when they are together.  In this 

case, observers would have a positive SIC and MIC.  To 

discriminate between these two possible explanations of 

performance with the side-by-side imagery, we ran a follow-

up experiment with the factorial manipulations necessary to 

calculate the MIC and SIC.  Because the manipulation of each 

sensor image is no longer selective after algorithmic fusion, 

we were not able to apply the SIC and MIC analysis to the 

algorithmically fused imagery. 

EXPERIMENT 2 
 

The goal of Experiment 2 was to measure the SIC and 

MIC from participants when they were making discrimination 

judgments with side-by-side imagery.  

 

Methods 

 

Observer. Ten new observers who gave informed consent 

participated in the study (male = 3, average age=23.7). All had 

normal or corrected-to-normal visual acuity, and normal color 

vision. After finishing the study, each participant received 40 

dollars as compensation. 

Stimuli. The base images were the same as images in 

Experiment 1 (although the algorithmically fused images were 

not used). For slow processing trials, the base images were 

displayed with zero mean Gaussian luminance noise added. 

The variance of the noise was chosen individually as described 

in the next subsection. 

Procedure. Each trial was the same as Experiment 1. For 

each trial, images appeared on left side, right side or both. 

There were two blocks in each session; the first block used the 

Ψ-method (Kontsevich & Tyler, 1999) to find the noise level 

corresponding to 90% accuracy for each image. In the second 

block, each source image could be presented with (slow) or 

without (fast) the added noise (see example in Figure 5).  All 

combinations of fast, slow, and absent on each source were 

used except there were no trials in which both were absent. 

There were four by 1 hour sessions, each session consisting of 

1320 trials. 

 

Results 

 

Allowing for the possibility that participants processed 

gun images different than tool images, we analyzed the SICs 

separately. Two subjects’ data were excluded from the tool 

analysis because their data indicated violations of selective 

influence (Formula 2). A summary of the SIC shapes indicated 

by the Houpt-Townsend (2010) statistic is given in Table 1.   
 

Table 1  

SIC Analysis for Experiment 2 

Subject Tool Weapon 

SIC MIC Strategy  SIC MIC Strategy 

1 + + P-O  + + P-O 

2 NA NA NA  + + P-O 
3 = = S-O  - = P-A 

4 NA NA NA  + = P-O 

5 + + P-O  + + P-O 
6 + + P-O  = = S-O 

7 + + P-O  - = P-A 

8 + + P-O  = + S-O 
9 + + P-O  = = S-O 

10 = + S-O  - - P-A 

Note. For strategy, P-A means parallel-AND, P-O means parallel-OR, and S-
O means serial-OR. 

 

   

Discussion 
 

The SIC analysis indicated two observers employed the 

same parallel-OR processing strategy for identifying both guns 

Figure 5. Example of visible image without noise (left) as fast 

processing task and with noise (right) as slow processing task.  



and tools. Among the six remaining subjects for whom both 

tool and gun SIC data were interpretable: three subjects used 

parallel-OR strategy for identifying tool and serial-OR for 

identifying gun, two subject used serial-OR for identifying 

tool and parallel-AND for identifying gun, one subject used 

parallel-OR strategy for identifying tool and parallel-AND for 

identifying gun. Based on the simulation studies reported in 

Houpt and Townsend (2010) and the estimated SICs, it is 

unlikely that those four observers used the same strategy for 

both tool and gun. 

 

GENERAL DISCUSSION 

 

Our first experiment indicated that the information from 

additional source does not gain advantage in information 

processing as expected. Our second experiment tried to 

explore the reason for limited capacity in cognitive fusion in 

Experiment 1. It suggested searching strategy might lead to 

inefficiently processing when images from different sensors 

were presented side-by-side.  When identifying gun, the 

observers may be limited capacity because they are waiting to 

process both images rather than responding as soon as they 

have identified gun in either image.  When identifying tool, 

the observer may be limited capacity due to serial-OR 

processing (i.e., only using one image source) or they may 

have been parallel-OR (and the SIC was not significant due to 

lack of power) and the limitation may be due to limited 

perceptual resources. 

Both algorithmic and cognitive fusion result in limited 

capacity, but cognitive fusion led to more limited capacity in 

current study. Given that Fox (2015) found no difference in 

capacity using a discrimination task with different stimuli, the 

performance differences between cognitive and algorithmic 

are likely task dependent. Based on our research thus far, and 

that it would be infeasible to catalog all possible stimuli that 

an operator might need to discriminate among, we suggest that 

operators should have a choice between algorithmic and 

cognitive fusion displays. 
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