

Evaluation of Cognitive Processing in Redundant Audio–Visual Signals

Elizabeth L. Fox Joseph J. Glavan Dr. Joseph W. Houpt

Need for Research

Growth in need for task efficiency

- Sensory integration
 - Speed up RTs
 - Increase accuracy

Limits of optimality $^{1} \label{eq:limits}$

- Conflicting cognitive pathways
 - Increase cognitive workload
 - Harm performance

Brief Overview

Hone in on specific sensory integration – audio & visual information

Redundant signals: Each modality supplies single target, prompting one response

often result from same cause

Redundant signals effect: Faster reaction time with redundant signals than either stimulus alone^{2,3}

Past Research

Naïve Assumption

 Redundant signals effect means facilitation between perceptual processes

But...

 Raab (1962) demonstrated independent, parallel, race model predicts redundant signals effect

Possible Explanations

Possible causes for redundant signals effect:

- **Perceptual facilitation:** Perception of redundant targets is interactive and coactive
- **Statistical facilitation:** Perception of redundant targets is independent and parallel

Assumptions:

- Independent
- Parallel
- First-Terminating

Statistical Facilitation

Coactive Model: Perceptual processes pool information from each modality to make a single decision

Race Model Inequality (RMI)

Miller⁴ derived:

 $P(RT < t | S_A \text{ and } S_V) \le P(RT < t | S_A) + P(RT < t | S_V)$

- If redundant signal RTs are faster than bound, we reject independent, parallel model and assume coactive cognitive processing
- Analyzes performance as more sources are added
 - Examines question of workload
 - Not directly parallel versus coactive

Capacity Coefficient

Datempnichetions:

Limited Workload capacity & stochastic dependence Limited Workload Capacity (C < 1): Decrease in performance Ratio aof: source as number of sources increases.

CUmbinishing Wanfielon du Capiteityt (Ch \pm inh): Wenforboahnee of each ausdior and tripsuade signalst averthe baseline performance as number of Baseline Performance: Performance total of individual and performance in performance in performance in each sources the number of sources in superformance in the processing models

5 - Houpt, Blaha, McIntire, Havig, & Townsend, 2013

Capacity Coefficient cont.

UCIP model is more constrained than the general class of race models tested by RMI

Evidence for unlimited capacity is evidence against violations of the RMI

Violations of race model inequality imply capacity above 1 (super capacity) for at least some time⁶

 Therefore, if capacity coefficient is never above one, there is no violation of race model inequality.

Hypotheses

Replication of Miller (1982)

Will find a violation of race model inequality

 Response times not attributed from independent race model^{4,7}

Capacity coefficient

Will find super workload capacity
 Reject independent parallel race model

Methods

Group 1: 119 undergraduate students receiving class credit for participation

Group 2: 26 students receiving paid compensation

 Used for comparing Miller (1982) analyses to additional SFT measures (for full analysis see Fox, Glavan, Houpt, under review)

	Visual	Øvisual
Audio	AV	AØ
Ø _{Audio}	Ø٧	ØØ

Audio: 780 Hz tone Visual: white asterisk (1.85°)

Results: Group 1

27 of 119 participants exceeded 90% accuracy

Decisive evidence of redundant-target advantage:

- audio-alone (BF = 1.11×10^{42})
- visual-alone (BF = 3.92×10^{13})

Results: Group 1 cont.

Only marginal evidence of a violation of the race model inequality

Quantile	t	<i>p</i> -value	BF	Miller (1982)
5%	10.90	1.000	$< 1.0 \mathrm{x} 10^{-16}$	<i>p</i> = .10
15%	5.98	0.999	3.33×10^{-16}	<i>p</i> < .05
25%	3.11	0.994	1.60×10^{-3}	<i>p</i> < .05
35%	0.15	0.147	0.79	<i>p</i> < .05
45%	-0.38	0.088	1.81	p = .10
55%	-0.18	0.126	1.31	
65%	1.62	0.749	6.40×10^{-2}	
75%	3.59	0.999	3.28×10^{-4}	
85%	6.54	1.000	$< 1.0 \mathrm{x} 10^{-16}$	-
95%	9.97	1.000	$< 1.0 \mathrm{x} 10^{-16}$	
		-		

Note. H_0 : *No violation of race model inequality.*

Response Time in ms

Results: Group 1 cont.

Capacity Coefficient:

- Super Capacity (C > 1): 5 participants
- Limited capacity (C = 1): 12 participants
- Group level: substantial evidence indicating limited capacity z-score (BF = 4.34)

Results: Group 2

12 of 26 participants exceeded 90% accuracy

Decisive evidence of redundant-target advantage:

- audio-alone (BF = 2.71×10^{215})
- visual-alone (BF = 1.17×10^8)

Quantile	t	<i>p</i> -value	BF	Miller
				(1982)
5%	2.36	0.981	0.04	<i>p</i> = .10
15%	0.78	0.775	0.34	<i>p</i> < .05
25%	-0.29	0.389	1.48	<i>p</i> < .05
35%	-1.70	0.058	10.70	<i>p</i> < .05
45%	-1.59	0.070	9.12	p = .10
55%	-1.24	0.121	5.49	
65%	-1.06	0.156	4.28	
75%	-0.40	0.350	1.71	
85%	1.29	0.888	0.17	
95%	3.35	0.997	8.26 x10 ⁻³	

Table 3: Sequential t-test of the race model inequality.

Note. H_0 : *No violation of race model inequality.*

Results: Group 2 cont.

Capacity Coefficient:

- Super Capacity (C > 1): 3 participants
- Limited capacity (C = 1): 1 participants
- Group level: slight evidence indicating limited capacity z-score (BF = 2.27)

Response Time in ms

Conclusions

No violation of the race model inequality

Difficult to examine individual influence in group level analysis

Biased toward responding

 Both group indicate lower false alarm rates and higher miss rates than Miller (1982)

Cognitive processing with audio-visual stimuli vary across individuals

- Evidence indicating a limited capacity at the group level
- researchers should be wary of conclusions about cognitive workload based solely on group analysis