

Introduction

- Systems Factorial Technology is a nonparametric statistical framework for discriminating serial/parallel, stopping rule, and workload capacity of cognitive processes that combine at least two sources of information.
- Our previous work using total search times indicated that the stimulus features color and shape are processed in parallel (coactively) during feature search and during target-absent conjunctive search, but our experimental manipulations failed to selectively influence total search times during target-present conjunctive search.
- Do our prior manipulations selectively influence critical time intervals other than total response time?
- For these intervals, are color and shape processed in parallel as our initial results suggest?

Survivor Interaction Contrast

Temporal Organization of Color and Shape Processing During Target Detection in Conjunctive Visual Search Joseph W. Houpt Joseph J. Glavan

Wright State University, Dayton, Ohio

Methods

- 5 Subjects (15 goal)
- \$10/session (\$50 total) in Amazon gift cards
- 5 one hour sessions
- Session 1: 30 minutes of training with feedback, remaining time divided between the 3 blocks
- Sessions 2-4: 5 minutes of each single-feature block, 40 minutes of two-feature blocks, calibrate every 10 minutes
- # of Color-Only Trials: *M* = 267.20, *SD* = 39.09 # of Shape-Only Trials: *M* = 234.00, *SD* = 30.56 # of Color-Shape Trials: *M* = 1963.80, *SD* = 240.39

Procedure

- Fixate center cross (gazecontingent trial initiation)
- If a red circle is present, move the mouse to left-click on it
- If a red circle is not present, right-click the mouse anywhere

Replication of Previous Results

TESTING ALTERNATIVE INTERVALS		Survivo
DV	Purpose	Target Prese
Initial Saccade Onset	Guidance using initial information	1/5
Pre-Target Fixation Onset	Guidance + distractor rejection (minimal target information)	2/5
Pre-Target Fixation Duration	Distractor rejection + target saccade planning	1 / 5
Target Fixation Onset	Guidance + distractor rejection (some target information)	2/5
Target Fixation Duration	Target affirmation (assuming no pre-fixation information)	0/5
Total Fixation Number	Global guidance	0/5
Mouse Move Initiation	Threshold for sufficient evidence of target presence	0/5
Mouse Move Duration	Target processing after mouse initiation	0 / 5
Second last fixation duration	Distractor rejection + search continuation decision	
Last fixation onset	Guidance + distractor rejection (no target information)	
Last fixation duration	Distractor rejection + search termination decision	

• Target (always red circle) present on 50% of trials • Always 24 stimuli on screen (diameter = 0.747° , minimum separation = 1.120°)

One distractor-type chosen to be more prevalent on each trial

Shape saliency

H L A

- 16 / 8 for single-feature blocks
- 10 / (2 x 7) for two-feature blocks
- Target replaces one of prevalent distractors
- 20" (23.56° x 18.94°) Display • EyeLink 1000 with chin rest

Example Displays

Trial Condition Target Absent 🛛 Target Present

Mean Initial Saccade Onset Target Present – Subiect 4 Shape 📕 H 🗖 I

Contact: glavan.3@wright.edu

Acknowledgements

This work funded by AFOSR grant FA9550-13-1-0087.