STT 1600 **DEPARTMENTAL SYLLABUS**

(Revised 12/2013)

TEXT: Elementary Statistics Using Excel, Fifth Edition by Mario F. Triola, (Pearson Addison Wesley).

COMPUTER LAB: 9 to 10 Excel labs during the semester. WRIGHT STATE CORE: STT 1600 is a Core Element 2 (Mathematics) course

COORDINATORS: Lisa Wellinghoff, Dr. Thaddeus Tarpey

Chapter/Section		Textbook Problems	Comments
1.1-1.4	1.2	1,4,8,9,11,21-24,28,31,34	Intro, statistical thinking,
Introduction	1.3	4,5,6,14,20,21,22,24,25,33(a,d)	types of data, sampling
	1.4	2,6,8,11,12,18,19,20,23,35	types or ania, sampling
2.1-2.4	2.2	3,7,16,19,21,29	Section 2.4 give examples of
Graphs	2.3	5-8,9,11	dotplots, scatterplots and time
Graphs	2.3	6,9,11,21,22	series
3.1-3.4	3.2		
		3,13,14,24,33(a)	Skip mid-range,
Descriptive	3.3	1,2,13,14,34,35,42	skip formula 3-5 and use only
Statistics	3.4	1,8,15,17,22,27,28,29,32	formula 3-4 for std dev., skip
			coefficient of variation, skip
			Chebyshev's Theorem
4.1-4.6	4.2	1,3,5,14,17,28,29,37-39,41	
Probability	4.3	3,5,7,14,16,17-20,33-38,40	
	4.4	6,8,10,13,18,20	
	4.5	3,4,5,7,11,12,19,22	
	4.6	1,5,16,27,31	
5.1-5.4	5.2	5,7,13,18	Introduce random variables
Discrete	5.3	21-24 (use formula), 31	and illustrate with binomial
Distributions	5.4	1,2,5	Distribution. Omit Poisson.
6.1-6.5	6.2	5,6,9-11,13-	Use Excel to compute normal
Normal		16,17,25,31,35,37,39,41,45-47	probabilities
Distribution	6.3	2(a,b),5-10,15,17,27(a),28	
	6.4	1,11,15	
	6.5	1,5,7,18	
7.1-7.3	7.2	5-17odd,20-22,24,26,27,37	Interpret C.I.'s,
Confidence	7.3	6,7,12-15,18,20,21	skip determining sample size
Intervals	7.5	0,7,12 15,10,20,21	n
8.1-8.4	8.2	5,7,9-11,13,16,17,20,21,	Skip power and part 2 of
Hypothesis	0.2	23,26,27,33	section 8-4
Testing	8.3	5-7,11,12,17-20,22,23,27,31	section 6-4
Testing	8.4	7,9,11,14-17,19,21,22	
9.1, 9.3	9.3	1,8a,10a,15a,16a	Part 1 of section 9.3 only
,	9.3	1,8a,10a,13a,10a	Part 1 of section 9.5 only
2-Sample t-Test	10.0	2.16.21.24	
10.1-10.3	10.2	3,16,21,24	Skip Part 2 of section 10-2
Correlation and		(Skip hypothesis testing for	and 10-3.
Regression		correlation – just plot data and	Use the formula at the very
		compute r)	bottom of page 544 for
	10.3	1-4,7,8,16,21	correlation r (ignore the other
			formulas).
			Use handout to illustrate
			correlation and regression
			examples.
12.1-12.2	12.2	5,7,9-14	Give printout of an ANOVA
One-Way			example
ANOVA	<u> </u>		and multiple comparisons
11.1,11.3	11.3	5-7,9,11,12,16,19	2x2 tables only (1 df)
(Optional)	1		
Chi-Square Test	1		

It is also recommended that the students are shown at least one journal article with an emphasis on how to interpret the statistical analysis and in particular, p-values. This can be made into a lab or a group or homework assignment, at the Instructor's discretion.

WSU Core Learning Outcomes

- Identify the various elements of a mathematical or statistical model
- Determine the values of specific components of a mathematical/statistical model or relationships among various components
- Apply a mathematical/statistical model to a real-world problem
- Interpret and draw conclusions from graphical, tabular, and other numerical or statistical representations of data
- Summarize and justify analyses of mathematical/statistical models for problems, expressing solutions using an appropriate combination of words, symbols, tables or graphs

OFFICE OF DISABILITY SERVICES LOCATION: 023 Student Union