
UNIVERSITY

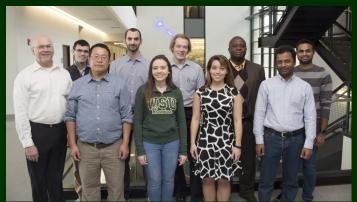

DEPARTMENT OF PHYSICS UNDERGRADUATE STUDIES HANDBOOK

Table of Contents

Торіс	Page			
Important Info "Cheat Sheet"	5			
Physics Departmental Directory	6			
Welcome & Overview	7			
Orientation: Becoming a Physics Major	8			
Where do I go for information on	9-12			
Advising	9			
 Help with departmental paperwork 	10			
 Help with homework 	10			
 Help with labs 	10			
 Find research and work opportunities 	11			
 Find computers and a place to study 	12			
 Hang out with fellow physics students 	12			
 Find help with anything else 	12			
Physics Academic Scholarship Opportunities	13			
Life after Physics at WSU	14-15			
Academic Programs	16-19			
 Bachelor of Science (BS) in Physics 	16-17			
 Bachelor of Arts (BA) in Physics 	18-19			
◊ General Info	20-24			
Faculty Research Areas	25-28			
Physics Undergraduate Courses	29-32			
Resources and Forms	33-43			
Ø PHY 4940 Senior Thesis Syllabus	33-38			
Ø Application for Senior Thesis Project	39-40			
Ø Information about 4+1 Master's Program	41-42			
Ø Society of Physics Students Information	43			

Important Info

College of Science & Mathematics Department of Physics

Wright State University 248 Fawcett Hall 3640 Colonel Glenn Hwy. Dayton, OH 45435

Phone: (937)775-2955 Email: physics@wright.edu Website: http://science-math.wright.edu/physics

All department and faculty offices are located in Fawcett Hall. All campus phone numbers can be reached at (937) 775-xxxx. All departmental email addresses are firstname.lastname@wright.edu

Important Contact Information:

Name	Title	Office	Email	Campus Ext.
Dr. Jason Deibel	Chair	248	jason.deibel@	x2955
Dr. Brent Foy	Assistant Chair	249	brent.foy@	x2955
Mr. William Wagner	Laboratory Supervisor	239	william.wagner@	x2955
Ms. Kelly Burcham	Administrative Support Coordinator	248	kelly.burcham@	x3847
Mrs. Kim Napier	Administrative Specialist	248	kim.napier@	x2955

WSU Physics Departmental Directory

Name	Title	Office Location	Phone	Email Address
Faculty				
Jason Deibel	Department Chair	248A Fawcett	x2955	jason.deibel
Elliott Brown	Professor APS Fellow, IEEE Fellow	NEC	x2955	elliott.brown
Allen Hunt	Professor	265 Fawcett	x3116	allen.hunt
Gregory Kozlowski	Professor	253 Fawcett	x2955	gregory.kozlowski
Thomas Skinner	Professor	263 Fawcett	x4549	thomas.skinner
Beth Basista	Assoc. Professor	259 Fawcett	x2955	beth.basista
Jerry Clark (Emeritus)	Assoc. Professor	245 Fawcett	x2955	jerry.clark
Brent Foy	Asst. Chair & Assoc. Professor	249 Fawcett	x2955	brent.foy
Sarah Tebbens	Assoc. Professor	203 Fawcett	x2955	sarah.tebbens
Guy Vandegrift	Assoc. Professor	241 Dwyer (Lake Campus)	x8334	guy.vandegrift
Ivan Medvedev	Assoc Professor	244 Fawcett	x2561	ivan.medvedev
Amit Sharma	Assoc. Professor	241 Fawcett	x2955	amit.sharma
Adrienne Traxler	Assoc. Professor	243 Fawcett	x2955	adrienne.traxler
Eric Rowley	Lecturer	271 Fawceett	x2955	eric.rowley
Ajani Ross	Instructor	uctor 243 Fawcett x2955 ajani.ross		
Jane L. Fox	L. Fox Research Faculty AGU Fellow 269 Fawcett x2983 jane.fox		jane.fox	
Staff				·
Kelly Burcham	Admin. Support Coordinator	248 Fawcett	x2955	kelly.burcham
Kim Napier	Napier Admin. Specialist 248 Fawcett X2955 kim.napier		kim.napier	
William Wagner	Lab. Manager	239 Fawcett	x2955	william.wagner

Welcome!!!

Welcome to the Wright State University Department of Physics! The Physics department has a history of providing both undergraduate and graduate students with a great physics education as well as helping them to start careers in physics, engineering, and more! We are always actively working as faculty to improve the educational experience of our students via innovative teaching and providing exciting research, teaching, and outreach opportunities.

Please use this handbook to help familiarize yourself with the WSU Physics Department and our undergraduate programs. However, if you have questions, concerns, or need help, please come talk to us. We are located on the 2nd floor of Fawcett Hall.

WSU Physics Faculty & Staff

Physics at Wright State University

The Physics Department at Wright State University is a medium sized department with 14 faculty. For undergraduate students, we provide a wide variety of programs in physics preparing them for either graduate school or for careers. Graduate students can choose either a Master's of Science (M.S. Physics degree), a Master's in Teaching (M.S.T. Physics degree), or a Ph.D. in Interdisciplinary Applied Sciences and Mathematics (IASM PhD degree).

The major research areas of the faculty include biophysics, computational physics, geophysics, materials science, nanotechnology, optics, physics education, plasma physics and spectroscopy. They study topics as fundamental as chemical reactions in the atmosphere of Mars to topics with societal impact such as the use of T-rays for full-body scanners at airports.

The Physics Department leads the college, the university, and the country in a variety of measures. For instance,

- three recent graduate students have received national Department of Defense SMART fellowships to pursue PhD degrees.
- A recent Alumni of our BS program won a highly competitive National Science Foundation Graduate Research Fellowship to attend graduate school
- our four national fellows (an American Geophysical Union fellow, two American Physical Society fellows, an IEEE fellow) are unmatched at WSU and, per faculty, is above some of the largest doctoral programs,
- the department has the only endowed chair position in the college,
- the external research funding received by physics faculty averages over \$1M a year,
- over 25% of the faculty serve on editorial boards of international journals,
- the first ever International Conference on Zinc Oxide was organized at WSU. Zinc oxide is the next generation optical material, with applications ranging from sun creams to DVD lasers.

Orientation: Becoming a Physics Major

There is no formal orientation process for starting any of the undergraduate Physics degree programs at Wright State University. The reason for this is that there are a myriad of ways a student can become a Physics major:

- A student can be directly admitted as a Physics major,
- A student can declare what is known as "Physics intent"
- A student can transfer from another institution's Physics program,
- A student can take a physics general education course and get inspired,

Regardless of the path you took to becoming a Physics major, we are extremely excited that you did!

Once you decide to be a Physics major,

- Let us know you will be surprised how much it helps us if we know who our Physics students are! Besides, there is some paperwork that we will need to complete to make you an official Physics student.
- 2. *Meet the chair* The Physics Dept. Chair is Dr. Jason Deibel. He likes to meet WSU Physics students. Stop by and introduce yourself.
- 3. *Meet your undergrad advisor* The designated College of Science & Mathematics is Laura Bearhs. Her office is located in the 106 Oelman Hall. You may also contact her at <u>laura.bearhs@wright.edu</u>. She will work with you to develop a plan of courses that will help you accomplish your goal of studying Physics. She will also help you develop a list of courses and a timeline for your graduation based on your past educational experience. You should meet with your advisor at a minimum of twice a year. We highly encourage you to discuss your planning with the Chair or the Assistant Chair.
- 4. Meet the students Where are the other students? Places that you can find them include your Physics classes, other courses, the WSU Physics Department computer lab, the Physics Help Room, WSU Physics Dept. functions (including seminars and receptions), the Society of Physics Students meetings, and more!
- 5. *Take Physics 1000* This is our "Introduction to Physics" course.
- 6. *Learn physics* Learning Physics is required if you want to get a degree in Physics.
- Teach physics The best way to learn is to teach. We have lots of opportunities for this including working in the Help Room, grading, teaching assistants, teaching introductory lab, and outreach opportunities (Physics demonstrations at local venues such as schools and museums).
- 8. **Do physics** Between research opportunities with WSU Physics Faculty and the Air Force Research Lab and local companies, there are a lot of places that you can do Physics. Ask us how!

1. Advising?

Physics majors at Wright State University are directly advised by tenured or tenure-track faculty in the department. Upon declaring a physics major, each student will be assigned a faculty advisor by the Department Chair and the Chair of the Undergraduate Studies committee. Physics majors are also informally advised through their participation in the Introduction to Physics (PHY 1000/1010) year-long course. In this experiential course, students gain skills and experiences that will help put them on a good path toward becoming a successful physics major. As part of the PHY 1000/1010 courses, students will receive academic and career advising and mentoring from not only the professor, but also other physics majors.

If you have questions regarding advising in relation to any of the undergraduate degree programs offered by the Department of Physics at WSU, please contact either the Chair or the Assistant Chair.

As a Physics major, you will be required once a semester to meet with your advisor before you register for the upcoming academic term. You have a registration PIN placed on your account preventing you from registering until you have met with your advisor. There is a form at the end of this handbook that you will complete at each of these advising sessions and return to the department office to have that PIN removed. It will be most beneficial to you to meet with your advisor at least twice every semester. What do you do if you don't know which advisor to go to? Well, go to the WSU Physics Dept. main office in 248 Fawcett Hall and ask. Someone there will be glad to help!

Where do I go for information on...

2. Help with Paper Work?

Many examples of the paperwork that you might have to complete during your time as a Physics major at WSU can be found in the back of this handbook. For assistance with paperwork such as registration, over-rides, graduation applications, travel, departmental jobs, etc., a good place to start is in 248 Fawcett Hall. Go there and ask any department faculty for help. Another good person to ask is your advisor.

3. Help with Homework?

There are multiple resources available to you for assistance with doing well on and understanding homework and course content from your Physics Courses:

- a. The Physics Help Room located in 201 Fawcett Hall
- b. The Physics Computer Lab
- c. Your professor. They have office hours. If you can't make his/her office hours, ask for an appointment, or email him or her.
- d. Your PHY 1000 instructor, peer mentors, etc.

4. Help with Labs?

There are multiple resources available to you for assistance with doing well on and understanding homework and course content from your Lab Courses:

- a. The teaching assistant assigned to your lab section.
- b. The Help Room
- c. Stop by and see William Wagner, Lab Manager- 239 Fawcett Hall

5. Find Research and Work Opportunities?

There are many opportunities for finding a paid position involving physics. We encourage you to seek out these possibilities as your physics education will be emboldened by such experiences and prospective employers and graduate schools like to see these things as well. As employment opportunities become available, faculty and staff will contact students. We also encourage you to speak to faculty such as the Chair or your advisor about finding employment. If you are interested in working with a faculty member in a research capacity, contact said professor.

On campus opportunities include:

- <u>Grader</u>: Grade homework for the PHY 1100, PHY 1120, PHY 2400, PHY 2410, PHY 1050, or PHY 1060 introductory or general education courses and on some occasions or the mid-level physics majors courses.
- *Laboratory Teaching Assistant*: Teach laboratories for the PHY 1100, PHY 1120, PHY 2400, PHY 2410, PHY 1050, or PHY 1060 introductory or general education courses.
- *Learning Assistant*: Assist a faculty member with class instruction. This is typically associated with classes that are taught in an active learning methodology such as scale-up.
- <u>Undergraduate Research Assistant</u>: Assist a faculty member with his or her scholarly research. Such positions can be volunteer or paid or for academic course credit. Learn more at the CoSM website for Undergraduate Research and Experiential Learning at <u>https://www.wright.edu/urel</u>

Off campus opportunities include:

- CoSM website for internships <u>https://www.wright.edu/urel</u>
- Air Force Research Laboratory Position
- SOCHE Internships (http://www.socheintern.org/)
- Internships with local companies
- National Science Foundation Research Experience for Undergraduate Program http://www.nsf.gov/crssprgm/reu/reu_search.jsp

Where do I go to for information on...

6. Find Computers and a Place to Study?

The physics department has a computer lab with access given only to physics majors. It is located in 240 Fawcett Hall. The current password for the door is 4086 and is to be kept private. This room has 10 computers and a white board. Many of the physics majors use this as a place to study, do homework, and get help from other students who have previously taken the classes. Also, when the department conference room, 242 Fawcett Hall, is not in use, students are welcome to use this room to study or eat a meal.

7. Hang out with fellow physics students?

There are multiple opportunities to hang out with other physics majors

- The Physics Computer Lab
- Join the Society of Physics Students
- Form a study group for one of your physics classes

(The undergraduate studies committee maintains an email list of physics majors taking PHY 2400 and 2410 to assist you with forming study groups.)

8. Find Help with anything else?

There are many ways to receive help in the physics department.

- a. Consult this handbook
- b. Ask your advisor
- c. Ask any faculty in the department office
- d. Ask another physics major
- e. Ask one of your physics professors
- f. Google ... it knows everything

Physics Academic Scholarship Opportunities

Physics Scholarship

Open to: Incoming direct admit students in the physics program demonstrating financial need

Minimum GPA requirement: at least 3.0 GPA Amount: \$500 - \$1000

Gust Bambakidis Scholarship

Open to: Current, full-time freshman or sophomore, progressing toward a degree Minimum GPA requirement: 2.75 Special requirements: Already has completed PHY 2400 and must complete the sequence while scholarship is in force

Special consideration to: Those who demonstrate exceptional involvement in Physics courses and

laboratories or those in the Society of Physics Students Amount: \$500 - \$1000

Merrill L. Andrews Memorial Scholarship

Open to: Full time undergraduate physics or engineering physics major, progressing toward a degree

Minimum GPA requirement: 3.2

Special requirements: Completed more than 12 semester hours of 2000 level courses or above or have at least a 3.2 GPA in all Physics courses with 18 or more quarter hours completed in physics at level 2000 or above

Special consideration to: Those who demonstrate exceptional involvement in Physics courses and laboratories or those in the Society of Physics Students Amount: \$500 - \$1000

Other Non-WSU Scholarship Opportunities

American Physical Society (APS) Related Scholarships (and links to other non-APS scholarships)

http://www.aps.org/programs/education/undergrad/students/scholarships.cfm

Physics and Astronomy Scholarship Opportunities (supported by Nucleus) http://www.compadre.org/student/scholarships/browse.cfm

Society of Physics Students (SPS) Scholarships http://www.spsnational.org/programs/scholarships/

American Association of Physics Teachers (AAPT) Scholarship for Future Teachers http://www.aapt.org/Programs/grants/lotze.cfm

Women in Science Giving Circle Student Scholarship Awards

https://science-math.wright.edu/alumni-and-giving/women-in-science-givingcircle-student-scholarship-awards Since 1965, over 350 people have successfully completed their BA/BS (Physics), BSEP, MS (Physics), MS (Medical Physics) and MST (Physics) studies at Wright State. The department is proud to share that graduates from our program have gone on to have distinguished and impactful careers in a variety of professions. Many of our alumni are still in the Miami Valley or other parts of Ohio. Some alumni have chosen to live and work in different parts of the United States or in other parts of the world. Graduates of the Wright State Physics program are now professors, scientists and engineers employed at national laboratories such as the Air Force Research Laboratory and Lawrence Livermore National Laboratory, and a variety of private companies. Graduates of the Wright State Physics program are also teachers or work outside of science and engineering as medical doctors and legal counsel for corporations.

Places and Positions of WSU Physics Alumni

Recent Graduate & Professional Programs

- Harvard University (Applied Physics)
- University of Wisconsin (Physics)
- Cornell University (Applied Physics)
- University of Maryland (Physics)
- The Ohio State University (Physics)
- The University of Texas at Arlington (Physics)
- Michigan Technological University (Engineering Physics)
- Ohio University (Medical School)
- Case Western Reserve University (Biomedical Engineering)
- University of Cincinnati (Science Education, Aerospace Engineering)
- University of Dayton (Masters of Public Administration)
- Pennsylvania State University (Astro Physics)
- Air Force Institute of Technology (Engineering Physics)
- University of Michigan (Applied Physics)
- University of Connecticut (Physics Program)

Professions of WSU Physics Alumni

Our alumni have gone on to become associate corporate counsel at MeadWestvaco, manager at Lockheed Martin, research leaders at Wright Patterson AFB, a physics teacher at the Dayton Regional STEM School, a teacher at Ann Arbor Public Schools, and university professors at the University of Utah and the University of Dayton, just to name a few. Others have gone on to get their Ph.D.'s and work in industry, Los Alamos National Lab, become surgeons, consultants and more!

Life after Physics at WSU

RESOURCES

Wright State University Career Services - http://www.wright.edu/career-services

For a list of graduate programs in physics at different universities visit - <u>http://www.gradschoolshopper.com/</u>

National Science Foundation (NSF) Graduate Research Fellowships - <u>http://www.nsfgrfp.org/</u>

Hertz Foundation Graduate Fellowships in the Applied Physical Sciences http://www.hertzfoundation.org/

National Physical Science Consortium Graduate Fellowships in the Physical Sciences - <u>http://www.npsc.org/</u>

National Defense Science and Engineering Graduate (NDSEG) Fellowship Program - <u>http://ndseg.asee.org/</u>

The GRE Exam - http://www.ets.org/gre

The GRE Physics Exam - http://www.ets.org/gre/subject/about/content/physics

APS Physics Job Center - http://careers.aps.org/search.cfm

OSA WORKinOPTICS - http://www.workinoptics.com/

Employment at AFRL - <u>https://afresearchlab.com/careers-and-opportunities/career-</u> employment

Bachelor of Science (BS) in Physics

This plan outlines a four-year path to graduation. You are expected to satisfy all "success marker" courses, grades, and GPAs as specified. For part-time students and students needing to complete background material, this schedule represents the order in which courses should be taken. This suggested plan to four-year graduation does not replace regular advising appointments. Some course offerings may change.

Term One	
PHY 1000 - Undergraduate Physics Seminar I Credit Hour(s):	1
MTH 2300 - Calculus I Credit Hour(s):	4
CHM 1210 - General Chemistry I Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total Credit Hours:	
	14
SUCCESS MARKERS: Can start PHY 2400 now if Calculus I already completed. Take PHY 1000 and MTI	H 2300 this semester.
Term Two	
PHY 1010 - Undergraduate Physics Seminar II Credit Hour(s):	1
PHY 2400 - General Physics I Credit Hour(s):	4
MTH 2310 - Calculus II Credit Hour(s):	4
CHM 1220 - General Chemistry II Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total Credit Hours:	15
SUCCESS MARKERS: Complete PHY 1010 and PHY 2400 by end of this year.	
Term Three	
PHY 2410 - General Physics II Credit Hour(s):	4
MTH 2320 - Calculus III Credit Hour(s):	4
MTH 2530 - Elementary Linear Algebra Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total: 18 Credit Hours	17
SUCCESS MARKERS: Latest PHY 2410 completion date for 4-year graduation.	
Complete MTH 2320 by end of this semester.	
Term Four	
PHY 2420 - Introduction to Modern Physics Credit Hour(s): 3	3
PHY 3220 - Applied Optics Credit Hour(s): 3	3
PHY 3710 - Analytical Mechanics Credit Hour(s): 3	3
MTH 2330 - Differential Equations Credit Hour(s): 3	3
CORE - Wright State Core Course Credit Hour(s): 3	3
Total Credit Hours:	15
SUCCESS MARKERS: Complete PHY 2420 this semester.	
Term Five	
PHY 3150 - Physics Instrumentation Credit Hour(s): 3	3
PHY 3500 - Advanced Physics Laboratory I Credit Hour(s): 2	2
PHY 4500 - Electricity and Magnetism I Credit Hour(s): 3	3
CORE - Wright State Core Course Credit Hour(s): 3	3
CORE - Wright State Core Course Credit Hour(s): 3	3
Total Credit Hours:	14
SUCCESS MARKERS: Complete MTH 2330 before PHY 4500.	Second S

Term Six	
PHY 3500 - Advanced Physics Laboratory I Credit Hour(s):	2
PHY 4510 - Electricity and Magnetism II Credit Hour(s):	3
MTH 3320 - Complex Variables Credit Hour(s):	3
GE - General Elective Credit Hour(s):	3
GE - General Elective Credit Hour(s):	3
Total Credit Hours:	14
Term Seven	
PHY 4600 - Intrduction to Quantum Mechanics I Credit Hour(s):	3
PHY 4730 - Mathematical Physics Credit Hour(s):	3
PHY 4940 - Senior Project Credit Hour(s):	3
GE - General Elective <i>Credit Hour(s)</i> :	3
GE - General Elective <i>Credit Hour(s)</i> :	3
Total Credit Hours:	15
SUCCESS MARKERS: Complete PHY 4730 before PHY 4610. Start PHY 4940 this semester.	
Term Eight	
PHY 4610 - Introduction to Quantum Mechanics II Credit Hour(s):	3
PHY 4830 - Statistical Mechanics Credit Hour(s):	3
PHY 4940 - Senior Project Credit Hour(s):	3
GE - General Elective Credit Hour(s):	3
Total: 12 Credit Hours	12

Note(s):	
(1) MTH 2350 can be substituted for MTH 2330.	

(2) All PHY 2420 and higher courses only offered once a year.

Bachelor of Arts (BA) in Physics

This plan outlines a four-year path to graduation. You are expected to satisfy all "success marker" courses, grades, and GPAs as specified. For part-time students and students needing to complete background material, this schedule represents the order in which courses should be taken. This suggested plan to four-year graduation does not replace regular advising appointments. Some course offerings may change.

Term One	
MTH 2300 - Calculus I Credit Hour(s):	4
CHM 1210 - General Chemistry I Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total Credit Hours:	13
SUCCESS MARKERS: Can start PHY 2400 now if Calculus I already completed.	
Take MTH 2300 this semester.	
Term Two	
PHY 2400 - General Physics I Credit Hour(s):	4
MTH 2310 - Calculus II Credit Hour(s):	4
CHM 1220 - General Chemistry II Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total Credit Hours:	14
SUCCESS MARKERS: Complete 2400 by end of this year.	
Term Three	
PHY 2410 - General Physics II Credit Hour(s):	4
MTH 2320 - Calculus III Credit Hour(s):	4
MTH 2530 - Elementary Linear Algebra Credit Hour(s):	3
CORE - Wright State Core Course <i>Credit Hour(s):</i> Total Credit Hours:	
	14
SUCCESS MARKERS: Latest PHY 2410 completion date for 4-year graduation. Complete MTH 2320 by end of this semester.	
Term Four	
PHY 2420 - Introduction to Modern Physics Credit Hour(s):	3
PHY 3710 - Analytical Mechanics Credit Hour(s):	3
MTH 2350 - Differential Equations with Matrix Algebra Credit Hour(s):	4
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total Credit Hours:	16
SUCCESS MARKERS: Complete PHY 2420 this semester.	
Term Five	
PHY 3150 - Physics Instrumentation Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
CORE - Wright State Core Course Credit Hour(s):	3
Total Credit Hours:	15
Term Six	
PHY 3220 - Applied Optics Credit Hour(s):	3
GE1 - General Elective Credit Hour(s):	3
GE1 - General Elective Credit Hour(s):	3
	<u> </u>

GE1 - General Elective Credit Hour(s):	3
GE1 - General Elective Credit Hour(s):	3
Total Credit Hours:	15
Term Seven	
PHY 3500 - Advanced Physics Laboratory I Credit Hour(s):	2
PHY 4500 - Electricity and Magnetism I Credit Hour(s):	3
GE1 - General Elective Credit Hour(s):	3
GE2 - General Elective <i>Credit Hour(s)</i> :	3
GE2 - General Elective <i>Credit Hour(s)</i> :	3
Total Credit Hours:	14
SUCCESS MARKERS: Complete PHY 2420 this semeste	2r.
Complete PHY 3150, PHY 3500, PHY 4500 by end of this se	mester.
Term Eight	
PHY Credit Hour(s):	3
GE2 - General Elective <i>Credit Hour(s)</i> :	3
GE2 - General Elective <i>Credit Hour(s)</i> :	3
GE2 - General Elective <i>Credit Hour(s)</i> :	3
GE2 - General Elective <i>Credit Hour(s)</i> :	3
Total Credit Hours:	15
Note(s):	
(1) All PHY 2420 and higher courses only offered once a year.	

(2) GE1: General electives.

(3) GE2: General electives outside CoSM and CECS.

Program Description

The Department of Physics offers programs leading either to a Bachelor of Science degree or a Bachelor of Arts degree in physics. Students in secondary education may earn the Bachelor of Arts degree in physics and enter the Professional Year Experience program of the College of Education and Human Services for licensure in physics. This sheet outlines a program of study leading to a Bachelor of Science degree in physics.

The programs we offer provide a balance of experimental, hands-on experiences with theoretical and computational experiences that provide you with a strong foundation in physics. The curriculum is flexible to ensure students can pursue specific interests, such as picking up a minor in mathematics, engineering, or completing the pre-med track. Some core courses in physics include mechanics, electricity and magnetism, quantum mechanics, instrumentation, advanced lab, and optics. A host of other courses such as nanotechnology, lasers, mathematical physics, solid state physics, nuclear physics, and selected topics as well as courses from other departments can be taken are part of the general electives courses.

We have an active chapter of the Society of Physics students (<u>www.spsnational.org</u>). Most upper level classes range in the size from 10-20 students and provide you with an opportunity to interact closely with classmates and faculty. During your senior year, you'll work on a year-long research project with a faculty member and present your research results at the end of the year Physics Department seminar. Many students also find internships within the department or through other local and national organizations where they work on a variety of research projects. Upper level students are often hired by the department to help as teaching assistants or work in the Physics Help Room.

Career Opportunities

A Physics Degree prepares students for any one of a number of nearly limitless career opportunities. Nearly half of our graduates go off to graduate school in fields that include physics, engineering (electrical, biomedical, aerospace, mechanical), education, non-profit organizations, business, and medical school. Many physics graduates successfully enter and complete any graduate program that interests them! Other graduates directly enter the workforce and are employed in STEM related technical fields with both large and small companies in the Dayton area and nationally. These positions are typically engineering, software (programming) and applied research positions. The power of the Physics Degree is the solid core in mathematics and physics (theoretical and experimental skills) that provides you with a foundation for any one of a number of career opportunities. This solid foundation allows you to adapt and excel in nearly any emerging scientific and technical field in an ever changing and increasingly complex world.

Additional Comments

Other courses: PHY4400 Nanotechnology, PHY4730 Mathematical Physics, PHY4320 Lasers, PHY 3300 Astrophysics, PHY4630 Solid State Physics, PHY4700 Selected Topics (topics vary but have included Microfabrication Science, Medical Physics and Computational Physics .

Externals web links with additional information: American Institute of Physics (AIP): <u>www.aip.org</u> Employment statistics: <u>www.aip.org/statistics/trends/reports/empinibs0910.pdf</u> www.aip.org/statistics/trends/emptrends.html

Check out how well physics majors do on the MCAT for medical school and the LSAT for law school: <u>http://www.aip.org/statistics/trends/reports/mcat2009.pdf</u>

1000Undergraduate Physics Seminar INoneFall1010Undergraduate Physics Seminar IIPHY 1000Spring2400General Physics IMTH 2300Fall, Spring, Sumr2410General Physics IIPHY 2400, MTH 2310Fall, Spring, Sumr2420Introduction to Modern PhysicsPHY 2410Fall3150Physics InstrumentationPHY 2410Fall3220Applied OpticsPHY 2410Spring3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 2410, MTH 2320, MTH 2330 or 2350Fall4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4710Introduction to Quantum Mechanics IIPHY 3510Fall4720Senior ProjectPHY 3510Fall4730Calculus IIMTH 2300Fall, Spring, Sumr2300Calculus IIMTH 2310Fall, Spring, Sumr2320Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2330Differential Equations withMTH 2310Fall, Spring, Sumr2350Differential Equations withMTH 2310Fall, Spring, Sumr2350Differential Equat		Physics Course	Cheat Sheet (non-electives)	
1010Undergraduate Physics Seminar IIPHY 1000Spring2400General Physics IMTH 2300Fall, Spring, Sumr2410General Physics IIPHY 2400, MTH 2310Fall, Spring, Sumr2420Introduction to Modern PhysicsPHY 2410Fall3150Physics InstrumentationPHY 2410Fall3220Applied OpticsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2410, MTH 2320, MTH 2330 or 2350Fall3510Advanced Physics Laboratory IIPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IPHY 2420, MTH 330 or 2350Fall4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4740Senior ProjectPHY 3510SpringMath Course Cheat Sheet2300Calculus II2300Calculus IIMTH 2300Fall, Spring, Sumr2310Calculus IIMTH 2310Fall, Spring, Sumr2320Calculus IIIMTH 2310Fall, Spring, Sumr2320Calculus IIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2330Differential Equations withMTH 2310Fall, Spring, Sumr2330Linear AlgebraMTH 2300Fall, Spring, Sumr2330Linear AlgebraMTH 2300Fall, Spring,	Course	Title	Pre-Reqs	Typicaly Offered
2400General Physics IMTH 2300Fall, Spring, Sum2410General Physics IIPHY 2400, MTH 2310Fall, Spring, Sum2420Introduction to Modern PhysicsPHY 2410Fall3150Physics InstrumentationPHY 2410Fall3220Applied OpticsPHY 2410Spring3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 2410, MTH 2320, MTH 2330 or 2350Fall4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 2420, MTH 3330Fall4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4830Statistical MechanicsPHY 3510Spring4940Senior ProjectPHY 3510Fall, Spring, Sumr2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2310Calculus IIMTH 2310Fall, Spring, Sumr2320Calculus IIMTH 2310Fall, Spring, Sumr2330Differential Equations withMTH 2310Fall, Spring, Sumr2330Differential Equations withMTH 2310Fall, Spring, Sumr2330Differential Equations withMTH 2310Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3330Partial Differential EquationsMTH 2300Fall, Sp	1000	Undergraduate Physics Seminar I	None	Fall
2410General Physics IIPHY 2400, MTH 2310Fall, Spring, Summ2420Introduction to Modern PhysicsPHY 2410Fall3150Physics InstrumentationPHY 2410Fall3220Applied OpticsPHY 2410Spring3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 2420, MTH 2320, MTH 2330 or 2350Fall4500Electricity and Magnetism IPHY 2420, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4710Senior ProjectPHY 3510SpringMath Decement = 50 or MTH 13507310Calculus IMTH 2310Fall, Spring, Summ7320Calculus IIMTH 2310Fall, Spring, Summ7330Differential EquationsMTH 2310Fall, Spring, Summ7330Differential Equations withMTH 2310Fall, Spring, Summ7330Partial Differential EquationsMTH 2300Fall, Spring, Summ7330 </td <td>1010</td> <td>Undergraduate Physics Seminar II</td> <td>PHY 1000</td> <td>Spring</td>	1010	Undergraduate Physics Seminar II	PHY 1000	Spring
2420Introduction to Modern PhysicsPHY 2410Fail3150Physics InstrumentationPHY 2410Fail3220Applied OpticsPHY 2410Spring3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fail3510Advanced Physics Laboratory IIPHY 2410, MTH 2320, MTH 2330 or 2350Fail4510Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fail4510Electricity and Magnetism IIPHY 2420, MTH 3330Fail4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fail4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsPHY 3510Fail4940Senior ProjectPHY 3510Fail, Spring, Sumr2300Calculus IMath placement = 50 or MTH 1350Fail, Spring, Sumr2300Calculus IIMTH 2310Fail, Spring, Sumr2330Differential EquationsMTH 2310Fail, Spring, Sumr2330Differential Equations withMTH 2310Fail, Spring, Sumr2330Linear AlgebraMTH 2300Fail, Spring, Sumr3330Partial Diffrential EquationsMTH 2300Fail, Spring, Sumr3330Partial Diffrential EquationsMTH 2300Fail, Spring, Sumr	2400	General Physics I	MTH 2300	Fall, Spring, Summer
3150Physics InstrumentationPHY 2410Fall3220Applied OpticsPHY 2410Spring3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 2410, MTH 2320, MTH 2330 or 2350Fall4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IPHY 4600Spring4830Statistical MechanicsPHY 3510FallMath Course Cheat Sheet2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2300Calculus IIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Linear AlgebraMTH 2300Fall, Spring, Sumr3300Partial Differential EquationsMTH 2300Fall, Spring, Sumr3300Partial Differential EquationsMTH 2300Fall, Spring, Sumr3300Partial Differential EquationsMTH 2300Fall, Spring, Sumr330Partial Differential EquationsMTH 2300Fall, Spring, Sumr330Partial Differential EquationsMTH 2300Fall, Spring, Sumr	2410	General Physics II	PHY 2400, MTH 2310	Fall, Spring, Summer
3220Applied OpticsPHY 2410Spring3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 2420, PHY 3150Spring4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsPHY 3510Spring4940Senior ProjectPHY 3510Fall, Spring, Sumr2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2310Calculus IIMTH 2310Fall, Spring, Sumr2320Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Linear AlgebraMTH 2300Fall, Spring, Sumr2330Partial Diffrential EquationsMTH 2310Fall, Spring, Sumr2330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3300Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3300Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3300Partial Diffrential EquationsMTH 2300 or MTH 2330 or MTH 2350Spring	2420	Introduction to Modern Physics	PHY 2410	Fall
3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 2420, PHY 3150Spring4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsPHY 3510Spring4940Senior ProjectPHY 3510FallMath Course Cheat Sheet2300Calculus IMTH 2300Fall, Spring, Sumr2310Calculus IIMTH 23102320Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Linear AlgebraMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300 or MTH 2330 or MTH 2350Spring	3150	Physics Instrumentation	PHY 2410	Fall
3710Analytical MechanicsPHY 2410, MTH 2330 or MTH 2350Spring3500Advanced Physics Laboratory IPHY 2420, PHY 3150Fall3510Advanced Physics Laboratory IIPHY 3500Spring4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsPHY 3510Spring4940Senior ProjectPHY 3510Image: SpringMath Course Cheat Sheet2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2310Calculus IIMTH 2310Fall, Spring, Sumr2320Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Linear AlgebraMTH 2300Fall, Spring, Sumr2330Partial Diffrential EquationsMTH 2310Fall, Spring, Sumr2330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr2330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300 or MTH 2350 or Spring	3220	Applied Optics	PHY 2410	Spring
3510Advanced Physics Laboratory IIPHY 3500Spring4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsPHY 3510SpringMath Course Cheat Sheet2300Calculus IMTH 2300Fall, Spring, Sumr2300Calculus IIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2330Differential Equations with Matrix AlgebraMTH 2300Fall, Spring, Sumr2330Linear AlgebraMTH 2300Fall, Spring, Sumr2330Differential Equations with Matrix AlgebraMTH 2300Fall, Spring, Sumr2330Linear AlgebraMTH 2300Fall, Spring, Sumr3330Partial Differential EquationsMTH 2300Fall, Spring, Sumr <tr< td=""><td>3710</td><td>Analytical Mechanics</td><td>PHY 2410, MTH 2330 or MTH 2350</td><td></td></tr<>	3710	Analytical Mechanics	PHY 2410, MTH 2330 or MTH 2350	
4500Electricity and Magnetism IPHY 2410, MTH 2320, MTH 2330 or 2350Fall4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 2420, MTH 3330Fall4830Statistical MechanicsPHY 3510Spring4940Senior ProjectPHY 3510Introduction to Quantum MechanicsMath Course Cheat Sheet2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2300Calculus IIMTH 23102310Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Differential Equations withMTH 2310Fall, Spring, Sumr2330Differential Equations withMTH 2310Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300 or MTH 2330 or MTH 2350Fall, Spring, Sumr	3500	Advanced Physics Laboratory I	PHY 2420, PHY 3150	Fall
4510Electricity and Magnetism IIPHY 4500Spring4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 2420, MTH 3330Spring4830Statistical MechanicsPHY 4600Spring4940Senior ProjectPHY 3510SpringMath Course Cheat Sheet2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2310Calculus IIMTH 2300Fall, Spring, Sumr2320Calculus IIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Differential Equations with Matrix AlgebraMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr	3510	Advanced Physics Laboratory II	PHY 3500	Spring
4600Introduction to Quantum Mechanics IPHY 2420, MTH 3330Fall4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsPHY 3510Spring4940Senior ProjectPHY 3510PHY 3510Math Course Cheat Sheet2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Sumr2310Calculus IIMTH 2300Fall, Spring, Sumr2320Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Differential Equations with Matrix AlgebraMTH 2300Fall, Spring, Sumr330Partial Diffrential EquationsMTH 2300 or MTH 2330 or MTH 2350Fall, Spring, Sumr	4500	Electricity and Magnetism I	PHY 2410, MTH 2320, MTH 2330 or 2350	Fall
4610Introduction to Quantum Mechanics IIPHY 4600Spring4830Statistical MechanicsSpring4940Senior ProjectPHY 3510Math Course Cheat Sheet2300Calculus IMath Placement = 50 or MTH 1350Fall, Spring, Sumr2310Calculus II2320Calculus III2330Differential Equations2350Differential Equations with Matrix Algebra2530Linear Algebra2330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr2330Differential Equations with Matrix Algebra2530Linear Algebra330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring, Sumr	4510	Electricity and Magnetism II	PHY 4500	Spring
4830 Statistical Mechanics Spring 4940 Senior Project PHY 3510 Math Course Cheat Sheet 2300 Calculus I 2300 Calculus I 2310 Calculus II 2320 Calculus III 2330 Differential Equations MTH 2310 Fall, Spring, Sumr 2330 Differential Equations MTH 2310 Fall, Spring, Sumr 2350 Differential Equations with Matrix Algebra 2530 Linear Algebra 2530 Linear Algebra 3330 Partial Diffrential Equations	4600	Introduction to Quantum Mechanics I	PHY 2420, MTH 3330	Fall
4940Senior ProjectPHY 35104940Senior ProjectPHY 3510Math Course Cheat Sheet2300Calculus I2300Calculus I2310Calculus IICalculus IIIMTH 23002320Calculus III2330Differential EquationsDifferential Equations with Matrix AlgebraMTH 23102530Linear Algebra2330Partial Diffrential EquationsMTH 2300Fall, Spring, Sumr2530Linear Algebra330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	4610	Introduction to Quantum Mechanics II	PHY 4600	Spring
Math Course Cheat Sheet 2300 Calculus I 2310 Calculus II 2320 Calculus II 2320 Calculus II 2330 Differential Equations 2330 Differential Equations with MTH 2310 Fall, Spring, Summer Stress 2350 Differential Equations with Matrix Algebra MTH 2310 2530 Linear Algebra 2530 Linear Algebra 3330 Partial Diffrential Equations	4830	Statistical Mechanics		Spring
2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Summer2310Calculus IIMTH 2300Fall, Spring, Summer2320Calculus IIIMTH 2310Fall, Spring, Summer2330Differential EquationsMTH 2310Fall, Spring, Summer2350Differential Equations with Matrix AlgebraMTH 2310Fall, Spring, Summer2530Linear AlgebraMTH 2300Fall, Spring, Summer330Partial Differential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	4940	Senior Project	PHY 3510	
2300Calculus IMath placement = 50 or MTH 1350Fall, Spring, Summer2310Calculus IIMTH 2300Fall, Spring, Summer2320Calculus IIIMTH 2310Fall, Spring, Summer2330Differential EquationsMTH 2310Fall, Spring, Summer2350Differential Equations with Matrix AlgebraMTH 2310Fall, Spring, Summer2530Linear AlgebraMTH 2300Fall, Spring, Summer330Partial Differential EquationsMTH 2320, MTH 2330 or MTH 2350Spring				
2310Calculus IIMTH 2300Fall, Spring, Sumr2320Calculus IIIMTH 2310Fall, Spring, Sumr2330Differential EquationsMTH 2310Fall, Spring, Sumr2350Differential Equations with Matrix AlgebraMTH 2310Fall, Spring, Sumr2530Linear AlgebraMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring		Math	Course Cheat Sheet	
2320Calculus IIIMTH 2310Fall, Spring, Summer2330Differential EquationsMTH 2310Fall, Spring, Summer2350Differential Equations with Matrix AlgebraMTH 2310Fall, Spring, Summer2530Linear AlgebraMTH 2300Fall, Spring, Summer3330Partial Differential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	2300	Calculus I	Math placement = 50 or MTH 1350	Fall, Spring, Summer
2320Calculus IIIMTH 2310Fall, Spring, Summer2330Differential EquationsMTH 2310Fall, Spring, Summer2350Differential Equations with Matrix AlgebraMTH 2310Fall, Spring, Summer2530Linear AlgebraMTH 2300Fall, Spring, Summer3330Partial Differential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	2310	Calculus II	MTH 2300	Fall, Spring, Summer
2330Differential EquationsMTH 2310Fall, Spring, Summer2350Differential Equations with Matrix AlgebraMTH 2310Fall, Spring, Summer2530Linear AlgebraMTH 2300Fall, Spring, Summer3330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	2320	Calculus III	MTH 2310	Fall, Spring, Summer
Matrix AlgebraMatrix Algebra2530Linear AlgebraMTH 2300Fall, Spring, Sumr3330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	2330	Differential Equations	MTH 2310	Fall, Spring, Summer
2530Linear AlgebraMTH 2300Fall, Spring, Summer3330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring	2350	Differential Equations with	MTH 2310	Fall, Spring, Summer
2530Linear AlgebraMTH 2300Fall, Spring, Summer3330Partial Diffrential EquationsMTH 2320, MTH 2330 or MTH 2350Spring		Matrix Algebra		
3330 Partial Diffrential Equations MTH 2320, MTH 2330 or MTH 2350 Spring	2530		MTH 2300	Fall, Spring, Summer
	3330		MTH 2320, MTH 2330 or MTH 2350	
	3320			

CORE PROGRAM REQUIREMENTS

Elements	Required Distribution	Hours
Communication	One first-year composition course One second-year writing course	6
Mathematics	One course	3
Global Traditions	One interdisciplinary Global Studies course One history course	6
Arts/Humanities	One course	3
Social Science	Two courses from different disciplines	6
Natural Science	Two lecture/lab science courses	8
Additional Core Courses	Two additional approved WSU Core course from any of the Elements (some programs may designate these courses)	6
Multicultural Competence	As a part of the Core, in addition to the interdisciplinary Global Studies Course (Element 3), students must take a scond designated multicultural competence class in the Element or as and additional course.	n/a
Writing Across the Curriculum	As a part of the Core, students must take two Integrated Writing (IW) Core Course	n/a
Total	12 Courses	38

CORE COURSES

	Element 1 - Communication: First Year Writing Co	ourse
ENG 1100	Academic Writing and Reading	
ENG 1110	Academic Writing and Reading- Repeat	
ENG 1130	Academic Writing and Reading	
ENG 1140	Intensive Academic Writing and Reading	
	Element 1 - Communication: Second Yeaer Writing	Course
EGR 3350	Technical Communications for Engineers and Scientist	
ENG 2100	Research Writing and Argumentation	
ENG 2110	Research Writing and Argumentation: Education	
ENG 2120	Research Writing and Argumentation: Health Sciences	
ENG 2130	Research Writing and Argumentation: Sciences	
ENG 2140	Research, Technical Writing, and Presentation for Scientist and	
	Element 2 - Mathematics	
EC 1050	Elementary Mathematical Economics and Business Models and	
EGR 1010	Introductory Mathematics for Engineering Applications (IW)	
MTH 1440	Mathematics and Modern World and Algebra Review	
MTH 1450	Mathematics and Modern World	
MTH 2240	Applied Calculus	
MTH 2280	Business Calculus	
MTH 2300	Calculus I	
MTH 2310	Calculus II	
MTH 2430	Mathematics Concepts for Teachers II	
STT 1600	Statistical Concepts	
STT 2640	Elementary Statistics	

	Element 3 - Global Traditions: Interdisciplinary Global	Studies
AFS 2000	What is African and African American Experience? (IW,MC)	
ART 2430	Nonwestern Art (IW,MC)	
ATH 2150	Comparative Nonwestern Cultures (IW,MC)	
ATH 2500	Introduction to Cultural Anthropology for Health Care	
CS 1000	Technology and Society (MC)	
EC 2100	The Economics of State and Society	
EC 2500	Economic Systems of the Global South (IW,MC)	
EC 2900	Global Economic, Business and Social Issues (IW,MC)	
ED 2100	Education in a Democracy (MC)	
ED 2600	Introduction to Education (IW,MC)	
ED 2800	Cultural Humility for Working with Youth (IW,MC)	
EDS 2900	Individuals and Exceptionalities (IW, MC)	
EES 2600	Environmental Science & Society: A Cross Cultural Perspective	
	(MC)	
ENG 2310	Comparative Literature: Non-Western Literatures (IW,MC)	
ENG 2320	•	
FAS 1050	Amish Society	
GEO 2210	Non-Western Human Environments (IW,MC)	
ML 2020	Chinese Culture Through Film (MC)	
ML 2030	Spanish Culture (MC)	
ML 2040	The Hispanic World: Cultures in Motion (MC)	
ML 2050	Russian Culture (MC)	
MUS 2420	2 Valenderstradelige in Steele operations in Networks	
PPH 2000	Global Health (IW,MC)	
PLS 2510	Comparative Nonwestern Social Systems (IW,MC)	
REL 2320	Nonwestern Religions (IW,MC)	
RST 2610	Regional Studies: Japan (IW,MC)	
RST 2620	Regional Studies: China (IW,MC)	
RST 2710	Regional Studies: Africa (IW,MC)	
RST 2810	Regional Studies: Latin America (IW,MC)	
RST 2010	Regional Studies: Middle East (IW,MC)	
RST 2910	Regional Studies: Indule Last (W,MC)	
URS 2000	Growth and Change in Urban Society (IW,MC)	
UKS 2000	Element 3 - Global Traditions: History	
CLS 1500	Introduction to Greek and Roman Culture	1 1
HST 1100	Western Civilizations to 1500	
HST 1200	The West and World since 1500	
A DT 2440	Element 4 - Arts/Humanities	1 1
ART 2140	Themes in Visual Culture	↓
CLS 1600	Introduction to Classical Mythology	+ $+$ $$
CLS 2040	Great Books - Classsics (IW)	↓
ENG 2040		↓
ENG 2050		↓
ENG 2310		<u> </u>
FMS 1310	Introduction to Film Studies	
ML 2020	Chinese Culture Through Film (MC)	

ML 2010	Element 4 - Arts/Humanities(cont'd)	1 1
ML 2040	The Hispanic World: Cultures in Motion (MC)	
ML 2050	Russian Culture (MC)	
MP 1310	The Moving Image	
	Music Learning	
AUS 2140	Music in Western Culture	
MUS 2420	Comparative Nonwestern Cultures: Music (IW,MC)	
MUS 2900	African-American Music: America and Beyond (IW,MC)	
PHL 2040	Great Books: Philosophy (IW)	
PHL 2050	Philosophy: The Big Question (IW)	
PHL 2100	Philosophy of State and Society	
REL 2040	Bible, Qur'an and Western Culture (IW,MC)	
H 2140	Theatre in Western Culture	
JH 2010	Studies in Humanities (IW)	
	Element 5 - Social Science	
ATH 2200	Introduction to Archaelogy	
C 2000	Economic Life (IW)	
EC 2040	Principles of Microeconomics	
C 2050	Principles of Macroeconomics	
C 2100	The Economics of State and Society	
C 2500	Economic Systems of the Global South (IW,MC)	
C 2900	Global Economic, Business and Social Issues (IW,MC)	
D 2600	Introduction to Education (IW,MC)	
D 2700	Introduction to Educational Psychology (IW)	
DS 2900	Individuals and Exceptionalities (IW, MC)	
IN 2050	Personal Financial Decision Making	
PLS 2000	Power and Politics	
PLS 2120	American National Government (MC)	

MC- Multicultural Competence

Biophysics

B. Foy - modeling of biological processes

Dr. Foy joined Wright State in 1994 after a PhD in Medical Physics at MIT. His research interests include: developing biologically-based kinetic models of toxin disposition; performing bioinformatic support and modeling for genomics/ proteomics/metabolomics studies; studying diffusion of proteins in cartilage as a possible sensitive indicator of early arthritic decay; using 13C NMR and mathematical models of biochemical reaction pathways to estimate metabolic fluxes. Dr. Foy is currently Director of the Medical Physics program.

T. Skinner - computational physics

Dr. Skinner obtained his PhD in Physics, applying ultraviolet spectroscopy to the study of the outer planets. He began his professional career at the University of Colorado's Laboratory for Atmospheric and Space Physics as a member of the ultraviolet spectroscopy team for the Galileo mission to Jupiter (1985-1988). After the space shuttle Challenger accident delayed the Galileo mission for 10 years, he expanded his research into the field of nuclear magnetic resonance (NMR) spectroscopy. He joined the Wright State Physics Department in 1993 and has currently received over \$1.4M in funding from NSF, NASA, and NIH. His primary research is the development of advanced NMR and EPR methods for spectroscopy and imaging, with a focus on applications of optimal control theory. He has also received funding for applying percolation theory to groundwater transport, as well as funding for continued research in planetary atmospheres. He has over 50 peer-reviewed articles to date, with an h-index of 16.

Chemical Physics

J. Fox (research faculty) - AGU Fellow - physics and chemistry of ionospheres and thermospheres of earth and planets

Dr. Fox received her PhD in chemical physics. She joined Wright State in 1995 after appointments at various other institutions. She was an Associate Editor of the Journal of Geophysical Research from 1989 to 1992. She researches chemical physics processes in the atmospheres of Mars and Venus (e.g., the chemistry of minor ions and neutrals, airglow and auroras, heating, atmospheric evolution), work primarily funded by NASA. Dr. Fox is a research professor. She was elected a fellow of the American Geophysical Union in 2005.

I. Medvedev - molecular spectroscopy, terahertz imaging, chemical sensing

Dr. Medvelev joined Wright State in 2010. His PhD thesis included the theoretical analysis of the rotational spectra of molecules of astrophysical interest. His research interests lie in the area of experimental atomic and molecular optical physics, with primary focus being the study of high resolution molecular ro-vibrational spectroscopy and its analytical applications. Currently, Dr. Medvedev is working on the development of analytical THz sensors in application to environmental and occupational chemical sensing and intelligence. He has over 30 peer-reviewed articles to date.

A. Sharma - applied theoretical/computational electronic structure methods

Dr. Sharma's current research is in the field of applied theoretical/computational electronic structure methods with focus on developing fundamental understanding, investigation of thermochemistry, study of dynamics and kinetics of chemical reactions which are important to understanding combustion. He has also contributed significantly to computational spectroscopy of the gas-phase molecular species. His PhD research focused on developing multi-scale model and atomistic modeling of chemical processes in materials and modeled the build-up of amorphous hydrocarbon layers in the fusion devices and studied the diffusion of hydrogen in graphite using ab initio molecular dynamics in condensed phase.

Geophysics

A. Hunt - electrical properties of random media; percolation theory

Dr. Hunt received his PhD in Condensed Matter Theory and was a Fulbright Fellow at Philipps Universität Marburg, 1985-1987. He was Hydrologic Sciences program director at NSF 2002-2003 and has been visiting faculty and scientist at a number of institutions before joining Wright State in 2004. His current research focuses on transport in porous media. He has given numerous invited talks on that subject at international conferences and recently wrote Percolation Theory for Flow in Porous Media, 2nd ed. (2009) by Springer Verlag. Dr. Hunt has a joint appointment with the Department of Earth & Environmental Sciences.

S. Tebbens - scaling phenomena

Dr. Tebbens has a PhD in Marine Geology and Geophysics. She was a tenured faculty at the University of South Florida before joining Wright State in 2004. Her research involves the nonlinear analysis and modeling of geophysical processes including coastal changes, tsunamis, forest fires, seismology and environmental hazards. Dr. Tebbens has received over \$1M in external funding over the years.

Physics Education

B. Basista - K-12 physics education

Dr. Basista is a physics educator and a STEM Center Fellow. Her PhD was in particle physics but her research now focuses on improving teacher quality at the K-12 level. She has received over \$6M in external funding as PI or co-PI. She is Director of the WeEXCEL center in science education at WSU; the center is funded, in part, by the Ohio Board of Regents. Dr. Basista joined Wright State in 1995 and works with the Department of Teacher Education.

A. Traxler - Physics education research

Dr. Traxler received her Ph.D. in Applied Mathematics & Statistics from the University of California Santa Cruz, 2011, a M.S. in Teaching from the University of Maine, 2006, and a B.S. in Physics from the University of Maine, 2004. Her research interests include problem-solving, student attitudes and epistemologies, diversity and equity issues in physics education. She joined WSU in 2014.

E. Rowley - K-12 physics education

Dr. Rowley has a PhD in Science Education with an emphasis in Physics. As a licensed highschool physics teacher, he brings teaching experience to our physics courses for pre-service teachers. His current research interests include use of the Investigative Science Learning Environment in the classroom. He joined Wright State as an Instructor in 2009 and became a Lecturer in 2012.

Solid State Physics/Materials Science

E. Brown - APS Fellow, IEEE Fellow - solid state electronics

Dr. Brown has worked at the Hughes Aircraft Co. and MIT Lincoln Laboratory, and was a program manager for DARPA. Before joining WSU in 2010, he was an EE faculty at UCLA and an ECE professor at UCSB. Dr. Brown is a Fellow of the IEEE and of the American Physical Society. In 1998, he received an Award for Outstanding Achievement from the U.S. Office of the Secretary of Defense. He is the Ohio Research Scholar in Layered Sensing at Wright State and holds a joint appointment with EE. His research includes terahertz solid state electronic devices. Research in solid-state sensor devices involves all aspects of device analysis and design including the basic solid-state physics, optimal sensor geometry and coupling (electromagnetic, thermal, acoustic, etc), noise mechanisms, and readout electronics.

J. Clark - optical characterization of solids, quantum electronics

Dr. Clark has been at Wright State since 1984. His research interests include atomic, molecular and optical physics, plasma physics, and quantum electronics. He has recently developed a cathodoluminescence and a photoreflectance set up for studying quantum dots. Dr. Clark has received a number of external contracts in support of his research and an NSF ILI grant in support of his teaching.

J. Deibel - terahertz & ultrafast spectroscopy

Dr. Deibel got his PhD in applied physics working on ultrafast spectroscopy. He joined Wright State in 2007. His current research focuses on the design and application of terahertz (THz) systems, including the finite-element simulation of THz waveguides and metamaterials, and the THz characterization of carbon nanotubes. He has received over \$4M in external funding. He has Dissertation Qualified Faculty status in the College of Engineering and Computer Science.

G. Kozlowski - High temperature superconductivity, magnetic properties of materials, metallic nanoparticles.

Dr. Kozlowski joined Wright State in 1999 after 10 years working in the Materials Directorate at the Air Force Research Lab, Wright-Patterson AFB. His research interests include materials science, magnetism and superconductivity. He has published over 100 papers and has been awarded a couple of patents. Dr. Kozlowski has a PhD from the Polish Academy of Sciences and a DSc from Wroclaw University. He has Dissertation Qualified Faculty status in the College of Engineering and Computer Science.

WSU Physics Undergraduate Courses

7 hours under this particular requirements.	
PHY1000 Undergraduate Physics Seminar I (Credits: 1) Provides undergraduate physics majors with an introduction to the course load, faculty, resources, and expectations associated with the Wright State University undergraduate physics program.	PHY1010 Undergraduate Physics Seminar II (Credits: 1) Provides undergraduate physics majors with an introduction to the course load, faculty, resources, and expectations associated with the Wright State University undergraduate physics program. Continua- tion of PHY 1000.
PHY1050 Physics of How Things Work (Credits: 3) The physics associated with everyday scientific and technological phenomena and devices, including those associated with the generation, detection, and application of sound, light, and energy.	PHY1060 Astronomy (Credits: 3) Introduction to astronomy emphasizing the solar system and the universe of stars and galaxies. Topics include the earth-moon system, other planets and their satellites, space exploration, theories for the origin of the solar system stellar evolution, astrophysics, and cosmology.
PHY1110 Principles of Physics I (Credits: 4) Fundamental physics of mechanics. Topics include laws of motion, work and energy, momentum, circular and rotational motion, gravity, fluids, mechanical waves and thermodynamics Prerequisite: MTH 1280 or WMTH for min. score of 05	PHY1120 Principles of Physics II (Credits: 4) Fundamentals of charge, electric field, magnetism, optics and modern physics. Topics include electric and magnetic fields, electromagnetic induction, electromagnetic waves, geometric and wave optics, optical instruments, relativity, quantum theory, and nuclear physics. Prerequisite: PHY 1110
PHY2400 General Physics I (Credits: 4) Introductory survey of mechanics for science and engineering students. Uses of in interpreting physical phenomena. Topics include vectors, kinematics, dynamics, energy, momentum, rotation, oscillation and thermodynamics. Prerequisite: MTH 2300 (may be taken concurrent) or EGR 1010 (may be taken concurrent)	PHY2410 General Physics II (Credits: 4) Introductory survey of electricity and magnetism. Uses calculus in interpreting physical phenomena. Topics include electric field and potential, currents, DC circuits, magnetic fields, Faraday's law, and optics. Prerequisite: PHY 2400 and MTH 2300 and MTH 2310 (may be taken concurrent)
PHY2420 Introduction to Modern Physics (Credits: 3) Phenomenology and theoretical concepts of modern physics. Special theory of relativity, quantum theory, atomic and molecular structure and spectra, x-rays and solid state physics, nuclear physics, and instrumentation for nuclear physics research. Prerequisite: PHY 2410 and MTH 2310	PHY2450 Concepts in Physics for Early Childhood Education (Credits: 3.5) Fundamental concepts and applications of physics designed for early childhood education majors. Topics are integrated with mathematics and include laboratory experiences, demonstrations, and projects. Students may use either PHY 2450 or PHY 2460, but not both courses, to satisfy the requirements of the WSU Core. Prerequisite: WMTH for min. score of 04 or MTH 1260

WSU Physics Undergraduate Courses (cont.)

PHY2460 Concepts in Physics for Middle Childhood Education (Credits: 3.5) Fundamental concepts and applications of physics designed for middle childhood education majors. Topics are integrated with mathematics and include laboratory experiences, demonstrations, and projects. Students may use either PHY 2450 or PHY 2460, but not both courses, to satisfy the requirements of the WSU Core. Prerequisite: WMTH for min. score of 04 or MTH 1260	PHY3150 Physics Instrumentation (Credits: 3) Analog and digital electronics with an emphasis on use in the laboratory. Topics include linear devices and analysis, op-amps, the use of digital components including logic gates, counters, microcontrollers, and ADC/DAC. Prerequisite: PHY 2410
PHY3220 Applied Optics (Credits: 3) Physical optics, with some review of geometrical op- tics. Topics include optical instrumentation, interfer- ence of light, optical interferometry, diffraction, fiber optics, lasers and nonlinear optics. Prerequisite: PHY 2410	PHY3460 Concepts and Applications in Physics II (Credits: 4) Basic concepts and applications in physics including electricity, magnetism, optics, waves, simple ma- chines. Inquiry learning environment emphasizing science process and mathematical reasoning, prob- lem-solving, technology and societal connections. Prerequisite: MTH 2430 and MTH 2450 and PHY 2460
PHY3500 Advanced Physics Laboratory I (Credits: 2) Statistical analysis of experimental data. Emphasizes experimental design, data analysis, and presentation in report form. Experiments are taken from several major areas of physics, such as optics, spectroscopy, solid state physics, acoustics, nuclear physics and electronics. Integrated Writing course. Prerequisite: PHY 2420 and PHY 3150	PHY3510 Advanced Physics Laboratory II (Credits: 2) Statistical analysis of experimental data. Emphasizes experimental design, data analysis, and presentation in report form. Experiments are taken from several major areas of physics, such as optics, spectroscopy, solid state physics, acoustics, nuclear physics and electronics. Integrated Writing course. Prerequisite: PHY 2420 and PHY 3150
PHY3710 Analytical Mechanics (Credits: 3) Problems in the dynamics of motion in 1, 2 and 3 dimensions. Mathematical and computational approaches are applied to systems with non-constant forces, central forces, and oscillations. Prerequisite: PHY 2410 and MTH 2350	PHY4270 Physics of Remote Sensing (Credits: 3) Purpose and motivation for remote sensing, spectral temporal, spatial, and radiometric characteristics and resolution issues, propagation of electromagnetic energy, optics, atmospheric effects, image collection and quality, sensor performance measures, platforms and orbits

WSU Physics Undergraduate Courses (cont.)

PHY4320 Lasers	PHY4450 Teaching Physical Science
(Credits: 3)	(Credits: 3)
Introduction to the physics of lasers including emis-	Pedagogical content knowledge and skills necessary
sion and absorption processes in lasing, the factors	to teach physical science. Includes an analysis of the
controlling laser gain, the properties of optical	high school physics curriculum and detailed develop-
resonators, and a survey of salient features for princi-	ment of teaching strategies for most physical science
pal types of lasers.	topics.
Prerequisite: PHY 2420	Prerequisite: PHY 2410
PHY4460 Multiple Representations in Physical	PHY4470 Development of Ideas in Physical
Science	Science
(Credits: 3)	(Credits: 3)
	· · · · · ·
Acquaints physics teachers with the multiple	Acquaints physics and chemistry teachers with the
representation method used in constructing concepts	construction of knowledge in physical science and its
and problem solving in physical science. Focus will be	implications to science instruction. Focuses on the
placed on representations including pictorial	processes that lead to the laws of physics and chem-
representations, motion and force diagrams, graphs,	istry and how this knowledge of science history can
energy bar charts, ray and wave front diagrams, and	be used to design physics and chemistry lessons.
use of analogies.	Prerequisite: PHY 2420
Prerequisite: PHY 2420	
PHY4500 Electricity and Magnetism I	PHY4510 Electricity and Magnetism II
(Credits: 3)	(Credits: 3)
Fundamental laws of electricity and magnetism from	Fundamental laws of electricity and magnetism from
viewpoint of fields. Review of vector analysis;	viewpoint of fields. Electromagnetic waves; time de-
electrostatics; special techniques in electrostatics;	pendent potentials and fields; radiation; resonant
magnetostatics; and material properties.	cavities; waveguides and transmission lines.
Prerequisite: PHY 2410 and (MTH 2330 or MTH 2350)	Prerequisite: PHY 4500
PHY4560 Integrating Phy Sci & Math II	PHY4400 Introduction to nanoscience and tech-
(Credits: 4)	nology (Credits: 3)
Integration of physics and mathematics, fulfilling	Topics include introduction to quantum mechanics,
science and math standards, physics education issues,	fabrication, characterization, materials, electronic
inquiry teaching practices, and assessment.	properties, optical properties, magnetic properties,
Applications of these to electricity, magnetism, waves, and optics	devices, MEMS and NEMS. Prerequisite: PHY 2410
and optics.	
PHY4600 Introduction to Quantum Mechanics I	PHY4610 Introduction to Quantum Mechanics II
(Credits: 3)	(Credits: 3)
Mathematical structure of quantum mechanics.	Introduction to the theoretical foundations of quan-
Applications to selected one- and three-dimensional	tum theory. The Schrodinger and Heisenberg formu-
problems with emphasis on atomic structure.	lations of the harmonic oscillator, the hydrogen atom,
Prerequisite: PHY 2420 and MTH 3330	the theory of quantized angular momentum, and
	scattering. Hilbert space, operators, commutation
	relations, and the Heisenberg uncertainty principle
	are included.
	Prerequisite: PHY 4600

WSU Physics Undergraduate Courses (cont.)

PHY4620 Nuclear and Particle Physics (Credits: 3) Nuclear properties and models, radioactive decay, nuclear applications, elementary particle properties and interactions, the standard model. Prerequisite: PHY 4600	PHY4630 Introduction to Solid State Physics (Credits: 3) Selected properties of solids and their quantitative explanation in terms of simple physical models. Applications of quantum mechanics to solids. Prerequisite: PHY 2420
PHY4700 Selected Topics in Physics (Credits: 1 to 3) Selected topics in physics. Prerequisite: PHY 3710	PHY4730 Mathematical Physics (Credits: 3) Survey of mathematical physics, including vector analysis, analytical mechanics, electromagnetism, and thermodynamics.
PHY4800 Classical Mechanics (Credits: 3) Introduction to classical theoretical physics. Emphasis on mechanics and mathematical techniques. Prerequisite: PHY 3710 and PHY 4510	PHY4830 Statistical Mechanics (Credits: 3) Introduction to microscopic and macroscopic physical systems developed from concepts of statistical phys- ics. Applications to classical and quantum systems. Theories of phase transitions, critical phenomena and fluctuations.
PHY4940 Senior Project (Credits: 3) Selected problems in experimental and theoretical physics with critical analysis of results. Integrated Writing course.	PHY 4400 Intro. To Nanoscience & Nanotechnology (Credits: 3) Introduction to nanoscience and technology. Topics include introduction to quantum mechanics, fabrica- tion, characterization, materials, electronic properties, optical properties, magnetic properties, devices, MEMS and NEMS.
Coming soon: 3000 Level Astrophysics	Coming soon: 4000 Level Clean Room Course

PHY 4940 – Senior Project Syllabus and Guidelines

Course Description:

This is a year-long capstone course in the physics program. Students must synthesize and apply conceptual understanding and practical knowledge gained from coursework to complete an extensive design/ development/research project similar to one they might encounter as a working professional. Because the senior project is intended to be a capstone experience for our majors, it is generally recommended that the student not begin their senior project before the summer preceding their senior year. It is also important for the student to evaluate if they have a sufficient background and/or experience for their proposed projects, especially whether the requisite upper-division courses have been completed or will be completed in time to benefit the student. This course sequence is also expected to span two semesters at 3 credit hours of research work per term. A student may apply to complete the entirety of their senior project in one semester, but this will be treated as an extreme exception that will require a clear demonstration of unique circumstances that requires approval of the Department Chair, the Chair of the Undergraduate Studies Committee, the Senior Project Supervisor, and the Senior Project Research Advisor. Approval of such requests will be rare and will only be granted if necessary.

The PHY 4940 Senior Thesis project provides an opportunity for students to complete a 2-semester long research project under the supervision of a faculty member of the Physics Department. Senior projects may be supervised by someone who is not a member of the Physics Department if a physics faculty member serves as a **participating** co-advisor.

Prior to the start of their last two semesters at Wright State University, students meet with faculty to select a Senior Project Research Advisor (SPRA) and begin to develop a plan for the senior project. Prior to the start of classes, the SPRA and the student should complete a draft of the senior project application (attached) that includes a short description of the project. The Chair of the Undergraduate Studies Committee and the Senior Project Advisor must approve all PHY 4940 senior project applications.

All PHY 4940 sections have two instructors. The primary instructor for all projects is the Senior Project Advisor (SPA). The SPA is a faculty member who supervises the course for all participating students, assist with project advising as needed, and helps to ensure project quality and rigor. The SPA will meet with all PHY 4940 students on a regular basis and provide milestone assignments to monitor and encourage progress. Other assignments will help students with career planning. The second instructor for each PHY 4940 section will be the SPRA. All grades will be determined by the Senior Project Advisor, with the including these exceptions (The complete detailed list can be found on page 4):

□ Mid-Project Report – Prior to the end of the first semester of PHY 4940, students will submit a progress report, summarizing the work completed to date on their project. Both the SPA and the SPRA will independently grade the reports. The assigned grade will be an average of the two.

□ Final Written Report – Students must complete a minimum 4 page report summarizing their senior project in the format of an academic journal which has been selected by the project research advisor. Both the SPA and the SPRA will independently grade the reports. The assigned grade will be an average of the two.

□ Oral Presentation – All students will present their work to the department near the end of the second semester of PHY 4940. The SPA and the SPRA will independently grade the reports, and the assigned grade will be an average of the two.

Learning Outcomes:

Students who are successful in this course will have proven their ability to

- a) Identify a problem that they have the ability to solve.
- b) Use their scientific reasoning skills developed in prior course work to solve said problem.
- c) Analyze the results of a problem.
- d) Report the results their work via both oral presentation and written report.

Accomplishment of these outcomes will require a literature search, laboratory and/or computer work, analysis and interpretation of results, progress reports, an extensive written final report, and a seminar presentation.

Integrated Writing

PHY 4940 is designated as an Integrated Writing Course (IW). Wright State students will be able to produce writing that:

- Demonstrates their understanding of course content,
- Is appropriate for the audience and purpose of a particular writing task,
- Demonstrates the degree of mastery of disciplinary writing conventions appropriate to the course (including documentation conventions), and
- Shows competency in standard edited American English.

This course meets the following requirements:

- The course syllabus identifies the course as an IW course.
- The IW learning outcomes are listed on the syllabus.
- A significant amount of writing is required: a minimum total of 2,000 words in IW Wright State Core courses and a minimum total of 5,000 words in IW courses in the major.
- Students will receive response to their writing and have opportunities to use that response to improve their writing.
- Writing assignments are integrated into the course design. Students should not be able to pass the course without completing the writing assignments.
- Criteria for evaluating writing are clearly articulated and provided to students.

PHY 4940 STUDENT Expectations

- 1. Identify a Senior Project Research Advisor and complete the PHY 4940 Senior Project application prior to the start of the first semester of PHY 4940.
- 2. Conduct a minimum of 10 hours of work on their projects weekly during both terms. It is a clear and stated expectation of the Senior Project that students perform research work regularly and consistently during both terms. Students who attempt to delay their work until the latter part of the 2nd term of 4940 will receive substantially lower grades and risk ultimately failing the course and jeopardizing their graduation.
- 3. Meet regularly with their Senior Project Research Advisor (weekly is recommended).
- 4. Attend all PHY 4940 meetings as called by the Senior Project Advisor. Attendance at these meetings is required and failure to attend will affect the final PHY 4940 grade.
- 5. Chronicle all aspects of the senior project in a formal lab notebook including progress, meetings, planning, data taking, analysis, etc.
- 6. Complete all PHY 4940 project assignments and milestones on schedule. Failure to do so will affect the final PHY 4940 grade.
- 7. Understand that the Senior Project is a serious endeavor and that failure to demonstrate both sufficient work and progress may impact their ability to graduate on schedule.

PHY 4940 SENIOR PROJECT RESEARCH ADVISOR (SPRA) Expectations

- 1. SPRA's will develop, in collaboration with the physics student, a Senior Project with physics content and rigor appropriate for a student who has completed the majority of the undergraduate physics curriculum.
- 2. SPRA's will meet regularly with their senior project students.
- 3. SPRA's will work with their students to develop comprehensive goals, objectives, and timelines for their project.
- 4. SPRA's will monitor student progress and completion of all related senior project assignments and tasks.
- 5. SPRA's will provide, in a timely manner, assessment of the items that they are responsible for grading.
- 6. If the project will involve working with a graduate student or post-doc, the SPRA will follow all of the above guidelines as well as take steps to insure that the graduate student and/or post-doc are interacting with the senior project student in a manner that insures the guality and experience of the project.

Course Grading

A: 90-100%, B: 75-89.9%, C: 60-74.9%, D: 50-59.9%, F: < 50%

PHY 4940 - 1 _{st} Semester		PHY 4940 - 2nd Semester	
Senior Project Meeting Attendance	5%	Senior Project Meeting Attendance	5%
Milestone Assignments	25%	Milestone Assignments	20%
Research Notebook*	15%	Research Notebook*	15%
Mid-term Progress Report*	25%	Mid-term Progress Report*	15%
Final Semester Report*	30%	Final Semester Report*	20%
Oral Presentation*	25%		

Grades will be assigned based on something similar to the following breakdown:

All deliverables will be uploaded to the PHY 4940 Pilot page. Materials accumulated over the course of the two semester sequence will form a senior project portfolio.

PHY 4940 Senior Project Milestones and Deliverables (Semester 1)

Week	Course Component	Description	Graded by
1	A. OrientationB. Draft Senior Project Application	Milestone: Turn in draft of senior project applica- tion, to be returned with feedback if any changes are necessary.	SPA
2/3	Finalized Senior Project Application	Milestone: Turn in final senior project application and signed student/SPRA contract.	SPA/ SPRA
3	Career Development Plan	Milestone: One-page summary of "in one year" goals and what steps are needed to get there.	SPA
4	Goals, Objectives, & Timeline	Milestone: Deadline to complete project information and logistics questionnaire.	SPA
5	Check-in	Milestone	SPA
6	Literature Search	Milestone	SPA
7	Mid-term Progress Report	Milestone: Turn in 2-page mid-term progress report.	SPA
8	Notebook Check		SPA/ SPRA
9	Research Methodology Description	Milestone: Turn in one-page description of data collection and analysis procedures (spanning completed work and plans).	SPA
10	Check-in	Milestone: Choose a reference manager and use it to export three project-relevant citations in an appropriate journal style.	SPA
11	Career Development Plan Part 2	Milestone	SPA
12	Draft Semester Report	Milestone: Turn in first draft of semester project report for comments.	SPA
13			
14	Final Semester Report		SPA/ SPRA
Finals Week	Semester final report is due	no later than noon on Wednesday of finals week.	

Week	Course Component	Description	Graded by
1	Check-in	Milestone	SPA
2	2 nd Term Goals, Objectives, & Timeline	Milestone: Reflection (0.5-1 page) on work habits from first semester of 4940, with notes on what you plan to continue or what specific changes you will make.	SPA
3	Career Development Plan Update	Milestone	SPA
4	Elevator Talks	Milestone	
5			
6		Milestone: Follow-up to week 2 reflection; report on outcome of any changes made.	
7	Notebook Check		SPA/ SPRA
8	Outline of Oral Presentation	Milestone: Send outline of oral presentation to SPA and SPRA.	SPA
9	Outline of Final Written Report	Milestone: Send outline of final report to SPA and SPRA.	SPA
10	Check-in	Milestone	
11	Practice Talks	Milestone: Give a practice talk to student/SPA audi- ence.	SPA
12			
13	Draft Written Report	Milestone: Send draft of final report to SPA and SPRA.	SPA
14	Senior Project Talks	Milestone: Final oral presentation about project.	SPA/ SPRA
Finals Week	Final report is due no	o later than noon on Wednesday of finals week.	SPA/ SPRA

Assignment Descriptions			
Component	Description		
Research Notebook	Students will chronicle all aspects of their senior project in this bound notebook in- cluding progress, meetings, planning, data taking, analysis, etc. For most students this will be a bound notebook, but it may be electronic if the SPRA agrees that is ap- propriate and the whole notebook can be submitted for feedback/grading.		
Progress Reports	Students must submit a 2 page summary of progress on their projects including a project description, goals, work done to date, problems, future goals, analysis performed, etc. The project advisor will submit written feedback. It is recommended that this update include outlines of both the final paper and presentation.		
	Students must complete a minimum 4 page report summarizing their senior project in the format of an academic journal which has been selected by the project advisor. At the conclusion of the first term, students must at least complete a draft of this document despite not having completed the project. Students will submit drafts of the final report and will receive written feedback from the advisor so that the stu- dents may submit a revised final draft.		
Oral Presentation	All students will give a presentation of their work to the department near the end of the second semester in which they complete their project.		

Wright State University Department of Physics Application for Senior Thesis Project (PHY 4940)

Student's Name:		
Date of Application:		
Student has Senior Standing in Physics (Required): Student must have, at the very minimum, completed the following PHY 2400, PHY 2410, PHY 2420, PHY 3500, PHY 3510	Yes ; courses:	No
 Please include with this document a printed one-page description of Title of Project Student Name Advisor(s) Project Statement 	f your research project ir Motivation/Rationale Methodology Intellectual Merit	n the following format:
# of course hours of PHY 4940 student will register for:	Fall	Spring
Projected Date of Completion:		
Proposed Project Advisor (Co-Advisors As Needed):		
Approved: Faculty, Senior Project Research Advisor (Co-Advisor) Comments:	Date:	
Approved: Chair, Undergraduate Studies Committee Comments:	Date:	
Approved: Faculty, Senior Project Research Advisor Comments:	Date:	

Wright State University Department of Physics Senior Thesis Project (PHY 4940) Contract

- By signing this document, all parties affirm that they have reviewed and discussed all aspects, responsibilities, and deadlines associated with PHY 4940 and the Senior Thesis Project.
- All parties agree to their roles and responsibilities as outlined in the PHY 4940 Senior Thesis Project Guidelines and Syllabus.
- All signing parties agree to respect and adhere to policies and deadlines associated with the Senior Thesis Project.
- All signing parties understand that failure to deliver work on time and of sufficient quality could result in a non-passing grade for PHY 4940 and a delay in graduation.

Student's Name:	
Signature:	
Senior Project Research Advisor's Name:	Date
Senior Project Research Co-Advisor's Name:	
Signature:	_Date

Physics-Dual Degree 4+1 Combined BS/MS Program

The attached curriculum shows paths to the BS+MS degrees over 5 years listing all required courses and the required number of electives. The two sequences reflect the alternate year offerings of some graduate courses. Specifically, this curriculum

a) includes all required courses for the BS in Physics;

- b) includes all required courses for the Physics Masters degree;
- c) includes 3 elective courses (9 to 10 semester credits depending on choice of courses).
- d) uses 2 elective courses (6 semester credits) in the Physics BS curriculum for required grad courses.

Required courses which can be double counted for both degrees are:

PHY4730/6730	PHY4800/6800	PHY4810/6810	PHY4830/6830
(13 semester credits) in the primary year sequence and			
DU 1V 4720			7400 0007400

PHY4730/6730 PHY4830/6830 PHY7100, PHY7120

in the alternate year sequence.

Elective courses which may be double counted for the both degrees include:

PHY4270/6270	PHY4320/6320	PHY4430/6430	PHY4630/6630,
	PHY4610/6610	PHY4620/6620	

Each semester in the first four years of the model curriculum is 16 semester hours or less which is consistent with the normal undergraduate curriculum. Each semester in the fifth year of the model curriculum is 11 semester hours or less, consistent with normal graduate curriculum.

Admissions Requirements

Ρ

Any student in the Physics BS program may petition to enter the 5 Year Physics Masters program during the semester prior to completing 60 semester hours of the model curriculum with a 3.2 average, including PHY 2400, 2410, 2420; and obtaining a 3.3 average in required physics and math courses taken to date.

The petition must be approved by the Physics Department Graduate Studies Committee and the Physics Department Chair and be forwarded to the Graduate School for final approval and admission to the degree program. The graduate studies committee and/or the chair may consult a petitioner's former instructors regarding suitability if they choose.

The admission to the program will normally be at the beginning of subsequent semester after approval. An intending student must then seek advising each term to make sure they are following the necessary curriculum to eventually complete the program.

Curriculum summary:

WSU Core:	Standard plan					
Physics Core:	PHY 1000 PHY 3500 PHY 3710	PHY 1100 PHY 3510	PHY 2420 PHY 4500	PHY 3220 PHY 4510	PHY 3150 PHY 3500	
Physics Required (Courses (BS):	PHY 4600	PHY 4610	PHY 4830	PHY 4940	
Related Field Requ	uirements:	MTH 2320 MTH 3330	MTH 2330 CHM 1210	MTH 2530 CHM 1220	MTH 3320	
Required Masters	courses:	PHY 4730/67 PHY 7100 PHY 8990	730 PHY 4 PHY 7	4800/6800 7120	PHY 4810/6810 PHY 8000	

Continuance in the program

A 3.0 overall GPA and a 3.0 GPA in required physics courses is required to remain in the program. Normal graduate school probation rules apply.

Upon admission to the program, academic advising and permission to register is necessary each term. (This is due to the close sequencing of courses that is necessary to meet the 5 year timeline.)

Students are eligible for financial aid based upon their enrollment status. Because participating students remain undergraduates through the completion of the bachelor's degree, they will be eligible for undergraduate financial aid through this period. Students will become eligible for graduate forms of financial aid—including Graduate Tuition Scholarships and GRAs/GTAs/GAs—when they become regularly-admitted graduate students after the completion of the bachelor's degree.

Reversion to single degree

Reversion to the 4 year BS degree occurs if the student does not enroll in the necessary graduate courses within 2 years following completion of the Physics BS requirements. In this case, PHY6000 or PHY7000 level courses may count as elective credits toward the BS degree but not toward the curricular requirements for the BS. If reversion occurs and the student subsequently is accepted into the Physics MS, any graduate credits applied to the Physics BS cannot count toward the 30 semester credits required for the Physics MS degree.

For more information about this program and for suggested course sequences and schedules, please visit: https://science-math.wright.edu/physics/bachelor-of-science-and-master-of-science-dual-degree-inphysics

Society of Physics Students (SPS)

The Society of Physics Students (SPS) is a professional association explicitly designed for students. Membership, through collegiate chapters, is open to anyone interested in physics. The only requirement for membership is that you be interested in physics. Besides physics majors, our members include majors in chemistry, computer science, engineering, geology, mathematics, medicine, and other fields.

Within SPS is housed <u>Sigma Pi Sigma</u>, the national physics honor society, which elects members on the basis of outstanding academic achievement. This unique two-in-one society operates within the <u>American Institute of Physics</u>, an umbrella organization for ten other professional science societies.

The Wright State University chapter of SPS is very active and organizes several activities and opportunities throughout the school year. In the past, these have included:

- Hosting the bi-weekly department tea times, where faculty, staff, and students take a break while enjoying light refreshments.
- Performing science demonstrations at local outreach venues including the Boonshoft Museum of Discovery and TechFest.
- The Annual Department Picnic.

The current faculty advisor for the WSU Chapter of SPS is Dr. Ivan Medvedev. If you would like to learn more about WSU SPS, please contact him and he will help you get involved.

To join the Society of Physics Students National organization, apply online at: https://www.associationsciences.org/sps/

WRIGHT STATE UNIVERSITY COLLEGE OF SCIENCE & MATHEMATICS DEPARTMENT OF PHYSICS

248 Fawcett Hall 3640 Colonel Glenn Hwy Dayton, OH 45435

Phone: (937)775-2955 Email: physics@wright.edu Website: http://science-math.wright.edu/physics

> Copyright 2013 Authored by Dr. Jason Deibel Last revision 1/2020