MTH 128 & 129 PRACTICE COMMON FINAL

1. Let $f(x) = \sqrt{x-1}$ and $g(x) = \frac{1}{x}$.

a. Write the following in interval notation. (6 points)

- 1) domain of f 2) domain of g
- b. Find and simplify (14 points)
 - 1) $\frac{f}{g}(x)$ 2) f(1+h) 3) $(f^{\circ}g)(x)$
- 2. Write the following in exact form without using the absolute value symbol. (6 points)
 - a. $|1 \sqrt{2}|$ b. $|\frac{1}{2} \frac{1}{\sqrt{2}}|$ c. |x 4| if x > 4
- 3. A rectangle has a perimeter of 36 feet. Exress the area A as a function of the length L of one of its sides. (8 points)
- 4. Show that the equation $x^2 + y^2 + 6x + 10y 44 = 0$ represents a circle. (10 points)
 - a. Give the coordinates of the center. B. Find the radius.
- 5. Solve the following and write your answers in interval notation. (16 points)
 - a. $|4 3x| \ge 7$ b. $\left|\frac{x+1}{2}\right| \le 6$

6. Consider the function f defined by $f(x) = \frac{-x^2}{3(x+1)(5-x)}$ (26 points)

- a. Describe the end behavior of the graph. (Give the equation of any horizontal asymptotes)
- b. Describe the domain *f* in interval form.
- c. Write the equation(s) of all vertical asypmtotes, if any.
- d. Find the coordinates of the x and y-intercepts of the graph, if any, or write 'none'.
- e. Give the interval chart (sign chart) for the graph of f.
- f. Find all values of x for which the graph is always above the x-axis.

g. Solve the inequality $\frac{-x^2}{3(x+1)(5-x)} \ge 0$. Express the solution set in interval notation.

- 7. Set up an appropriate equation for the situation described below. Then solve the problem. (8 points) Mozart composed 11 less than $\frac{1}{2}$ of the number of symphonies that Haydn composed. Together they compose 145 symphonies. How many symphonies did Mozart compose?
- 8. Find all points on the *x*-axis that are 5 units from the point (2,3). (6 points)

- 9. Evaluate the following without the use of a calculator. (16 points)
 - a. $3^{\log_3 7}$ b. $\log_{16} 16$ c. $10^{\log^{94}}$ d. $\log_6 12 + \log_6 18$

10. Given the equation of a parabola in standard form: $y = \frac{-3}{7} \left(x - \frac{14}{17} \right)^2 + \frac{5}{9}$ (12 points)

- a. Give the equation for the axis of symmetry.
- b. Specify whether the function attains a maximum or a minimum value.
- c. What is this value?
- d. For what value of *x* is this value obtained?
- e. What are the coordinates of the vertex?
- 11. Write the expression $\ln y^2 + \frac{1}{3}\ln(x^3y^9) 5\ln y$ as a single logarithm. (8 points)
- 12. Solve for *x*. No calculator of any kind is allowed. (16 points)
 - a. $2(1+3^x) = 7$ b. $\log_{15} x + \log_{15}(x-2) = 1$
- 13. Write an appropriate equation for the simulation described below. Then solve the problem.

The admission fee at an amusement park is \$1.50 for children and \$3.50 for adults. On a certain day 2400 people entered the park and the admission fees collected totaled \$5,200.00. How many children and adults were admitted? (8 points)

14. Find all the solutions of the following systm of equations. Give all solutions as ordered pairs. (10 points)

$$\begin{cases} x^2 + y^2 = 8\\ x + y = 0 \end{cases}$$

15. Following is an interval chart used to solve the inequality (x + 2)(x - 3) < 0.

interval	$(-\infty, -x)$	(-2,3)	(3,∞)
test x-value	-3	0	4
resulting product	(-1)(-6)	(2)(3)	(6)(1)
sign of that product	pos	neg	pos
sign of product for every x in the interval	pos	neg	pos

Use the above information to find the solution sets of the following: (10 points)

a. $(x+2)(x-3) \le 0$ b. (x+2)(x-3) > 0 c. $(x+2)(x-3) \ge 0$